Image Restoration Using a Novel Model Combining the Perona-Malik Equation and the Heat Equation

Main Article Content

Samira Lecheheb
Messaoud Maouni
Hakim Lakhal

Abstract

This article is devoted to the mathematical study of a new proposed model based on a Perona-Malik equation combined with a heat equation. This study shows how system of partial differential equations can be used to restore a digital image. By using compactness method and the monotonicity arguments, with suitable assumptions on the nonlinearities, we prove the existence of the weak solution for the proposed model which its consistency is given in our work.

Article Details

References

  1. A. Aarab, N.E. Alaa, H. Khalfi, Generic reaction-diffusion model with application to image restoration and enhancement. Electron. J. Differ. Equ. 2018 (2018), 125.
  2. R. Aboulaich, D. Meskine, A. Souissi, New diffusion models in image processing, Computers Math. Appl. 56(4) (2008), 874-882.
  3. L. Afraites, A. Atlas, F. Karami, D. Meskine, Some class of parabolic systems applied to image processing. Discr. Contin. Dyn. Syst. Ser. B. 21(6) (2016), 1671-1687.
  4. N.E. Alaa, M. Aitoussous, W. Bouarifi, D. Bensikaddour, Image restoration unisg a reaction-diffusion process. Electron. J. Differ. Equ. 2014 (2014), 197.
  5. N.E. Alaa, M. Zirhem, Bio-inspired reaction diffusion system applied to image restoration. Int. J. Bio-Inspired Comput. 12(2) (2018), 128-137.
  6. A. Atlas, M. Bendahmane, F. Karami, D. Meskine, O. Oubbih, A nonlinear fractional reaction-diffusion system applied to image denoising and decomposition. Discr. Contin. Dyn. Syst. Ser. B. http://dx.doi.org/10.3934/dcdsb.2020321.
  7. A. Atlas, F. Karami, D. Meskine, The Perona-Malik inequality and application to image denoising. Nonlinear Anal., Real World Appl. 18 (2014), 57-68.
  8. G. Aubert, P. Kornprobst, Mathematical problems in image processing. Springer-Verlag, New-York. (2002).
  9. H.F. Catte, P.L. Lions, J.M. Morel, T. Coll, Image selective smoothing and edge detection by nonlinear diffusion. SIAM J. Numer. Anal. 29 (1) (1992), 182-193.
  10. A. Chambolle, P.L. Lions, Image recovery via total variation minimization and related problems. Numer. Math. 74 (2) (1997), 147-188.
  11. Y. Chen, M. Levine Rao, Variable exponent, linear growth functionals in image restoration. SIAM J. Appl. Math. 44 (4) (2004), 1383-1404.
  12. Z. Guo, Q. Liu, J. Sun, B. Wu, Reaction-diffusion systems with p(x)-growth for image denoising. Nonlinear Anal., Real World Appl. 12 (5) (2011), 2904-2918.
  13. Z. Guo, Q. Liu, On a reaction-diffusion system applied to image decomposition and restoration. Math. Computer Model. 53 (2011), 1336-1350.
  14. S. Kichenassamy, The Perona-Malik paradox. SIAM J. Appl. Math. 57 (5) (1997), 1328-1342.
  15. S. Lecheheb, M. Maouni, H. Lakhal, Existence of solutions of a quasilinear problem with Neumann boundary conditions. Bol. Soc. Parana. Mat. In press.
  16. S. Lecheheb, M. Maouni, H. Lakhal, Existence of the solution of a quasilinear equation and its application to image denoising. International Journal of Computer Science, Int. J. Computer Sci. Commun. Inform. Technol. 7 (2) (2019), 1-6.
  17. S. Lecheheb, M. Maouni, H. Lakhal, Image restoration using nonlinear elliptic Equation. Int. J. Computer Sci. Commun. Inform. Technol. 6 (2) (2019), 32-37.
  18. J.L. Lions, Quelques m ´ethodes de r ´esolution des probl`emes aux limites non lin ´eaires. Dunod, Paris, (1969).
  19. S. Osher, L. Rudin, E. Fatemi, Nonlinear total variation based noise removal algorithms. Physica D, 40 (1992), 259-268.
  20. P. Perona, J. Malik, Scale-espace and edge detection using anisotropic diffusion. IEEE Trans. Pattern Anal. Mach. Intell. 12 (1990), 429-439.
  21. M. Zirhem, N.E. Alaa, Existence and uniqueness of an entropy solution for a nonlinear reaction-diffusion system applied to texture analysis. J. Math. Anal. Appl. 484 (1) (2020), 123-719.