On Firmly Non-Expansive Mappings

Main Article Content

Joseph Frank Gordon
Esther Opoku Gyasi

Abstract

In this paper, it is shown that for a closed convex subset C and to every non-expansive mapping T:C->C, one can associate a firmly non-expansive mapping with the same fixed point set as T in a given Banach space.

Article Details

References

  1. F.E. Browder, Nonlinear monotone operators and convex sets in banach spaces. Bull. Amer. Math. Soc. 71(5) (1965), 780-785.
  2. F.E. Browder, Nonexpansive nonlinear operators in a Banach space. Proc. Nat. Acad. Sci. USA, 54(4) (1965), 1041-1044.
  3. F.E. Browder, Convergence theorems for sequences of nonlinear operators in banach spaces. Math. Zeitschr. 100(3) (1976), 201-225.
  4. F.E. Browder, W.V. Petryshyn. The solution by iteration of nonlinear functional equations in banach spaces. Bull. Amer. Math. Soc. 72(3) (1966), 571-575.
  5. F.E. Browder, W.V. Petryshyn. Construction of fixed points of nonlinear mappings in Hilbert space. J. Math. Anal. Appl. 20(2) (1967), 197-228.
  6. W. Kirk. A fixed point theorem for mappings which do not increase distances. Amer. Math. Mon. 72(9) (1965), 1004-1006.
  7. J. George, Minty et al. Monotone (nonlinear) operators in Hilbert space. Duke Math. J. 29(3) (1962), 341-346.
  8. R. Bruck. Nonexpansive projections on subsets of Banach spaces. Pac. J. Math. 47(2) (1973), 341-355.
  9. R. Smarzewski. On firmly nonexpansive mappings. Proc. Amer. Math. Soc. 113(3) (1991), 723-725.
  10. S. Banach, H. Steinhaus. Sur le principe de la condensation de singularites. Fundam. Math. 1(9) (1927), 50-61.