Pricing Options in a Delayed Market Driven by Le'vy Noise

Main Article Content

Ismail Hamed Elsanousi


In this paper we studied stochastic delayed differential equations driven by Le'vy noise. The analogue of Ito formula is considered. The Black-Scholes formula analogue for Vanilla call option price formula is derived.

Article Details


  1. A. Chojnowska-Michalik, Representation theorem for general stochastic delay equations, Bull. Acad. Polon. Sci. Ser. Sci. Math. Astronom. Phys. 26 (1978), 635-642.
  2. G. Da Prato, J. Zabczyk, Stochastic equations in infinite dimensions, Encyclopedia of Mathematics and its Applications, Cambridge University Press, Cambridge (UK), 1992.
  3. I. Elsanousi, B. Pksendal, A. Sulem, Some solvable stochastic control problems with delay, Stoch. Stoch. Rep. 71 (2000), 69-89.
  4. J.C. Hull, A. White, The pricing of options on assets with stochastic valatilities, J. Finance, 42 (1987), 281-300.
  5. S.-E.A. Mohammed, Stochastic Differential Systems With Memory: Theory, Examples and Applications, in: L. Decreusefond, B. Øksendal, J. Gjerde, A.S. Ust ¨unel (Eds.), Stochastic Analysis and Related Topics VI, Birkh ¨auser Boston, Boston, ¨ MA, 1998: pp. 1-77.
  6. F. Black, M. Scholes, The pricing of options and corporate liabilities, J. Polit. Econ. 81 (1973), 637-654.
  7. B. Oksendal, A. Sulem, Applied stochastic control of jump diffusions, Springer, Berlin, 2005.
  8. M. Arriojas, Y. Hu, S.-E. Mohammed, G. Pap, A delayed black and scholes formula, Stoch. Anal. Appl. 25 (2007), 471-492.
  9. D. Applebanm, Le'vy process and stochastic calculus, Cambridge Studies in Advanced Mathematics Vol. 116, Cambridge University Press, Cambridge, 2009.
  10. P.E. Protter, Stochastic integration and differential equations, Springer, Berlin, 2005.
  11. M. Reiß, M. Riedle, O. van Gaans, Delay differential equations driven by L ´evy processes: Stationarity and Feller properties, Stoch. Proc. Appl. 116 (2006), 1409-1432.
  12. Y. Kazmerchuk, A. Swishchuk, J. Wu, The pricing of options for securities markets with delayed response, Math. Computers Simul. 75 (2007), 69-79.
  13. S. Federico, B.K. Øksendal, Optimal Stopping of Stochastic Differential Equations with Delay Driven by L ´evy Noise, Potential Anal. 34 (2011), 181-198.