An Affirmative Result on Banach Space

Main Article Content

V. Srinivas
T. Thirupathi

Abstract

The aim of this paper is to establish a common fixed point theorem on Banach space using occasionally weakly compatible (OWC) mappings.

Article Details

References

  1. H.K. Pathak, M.S. Khan, R. Tiwari, A common fixed point theorem and its application to nonlinear integral equations, Computers Math. Appl. 53 (2007), 961–971. https://doi.org/10.1016/j.camwa.2006.08.046.
  2. S. Sharma, B. Deshpande, A. Pandey, Common fixed point point theorem for a pair of weakly compatible mappings on Banach spaces, East Asian Math. J. 27 (2011), 573–583. https://doi.org/10.7858/eamj.2011.27.5.573.
  3. A. Djoudi, L. Nisse, Greguš type fixed points for weakly compatible maps, Bull. Belg. Math. Soc. Simon Stevin. 10 (2003), 369–378. https://doi.org/10.36045/bbms/1063372343.
  4. S. Sharma, B. Deshpande, Common fixed point theorems for finite number of mappings without continuity and compatibility on intuitionistic fuzzy metric spaces, Chaos Solitons Fractals. 40 (2009), 2242–2256. https://doi.org/10.1016/j.chaos.2007.10.011.
  5. R.A. Rashwan, A common fixed point theorem in uniformly convex Banach spaces. Ital. J. Pure Appl. Math. 3 (1998), 117–126.
  6. N. Shahzad, S. Sahar, Fixed points of biased mappings in complete metric spaces, Radovi Math. 11 (2002), 249-261.
  7. S. Sharma, P. Tilwankar, Some fixed point theorems in intuitionistic fuzzy metric spaces, Tamkang J. Math. 42 (2011), 405–414. https://doi.org/10.5556/j.tkjm.42.2011.683.
  8. V. Srinivas, A result on Banach space using property E.A, Indian J. Sci. Technol. 13 (2020), 4490–4499. https://doi.org/10.17485/IJST/v13i44.1909.
  9. V. Srinivas, T. Thirupathi, A result on Banach space using E.A like property, Malaya J. Mat. 8 (2020), 903–908. https://doi.org/10.26637/MJM0803/0029.
  10. H.K. Pathak, S.N. Mishra, A.K. Kalinde, Common fixed point theorems with applications to nonlinear integral equations, Demonstr. Math. 32 (1999), 547-564. https://doi.org/10.1515/dema-1999-0310.