n-Convexity via Delta-Integral Representation of Divided Difference on Time Scales
Main Article Content
Abstract
We introduce the delta-integral representation of divided difference on arbitrary time scales and utilize it to set criteria for n-convex functions involving delta-derivative on time scales. Consequences of the theory appear in terms of estimates which generalize and extend some important facts in mathematical analysis.
Article Details
References
- M. Bohner, A. Peterson, Dynamic equations on time scales: An introduction with applications, Springer Science & Business Media, 2001.
- M. Bohner, A. Peterson, Advances in dynamic equations on time scales, Springer Science & Business Media, 2002.
- M. Bohner, S.G. Georgiev, Multivariable dynamic calculus on time scales, Springer, 2016.
- L. Ciurdariu, A note concerning several hermite-hadamard inequalities for different types of convex functions, Int. J. Math. Anal. 6 (2012), 33–36.
- J. E. Pecˇaric´, Y. L. Tong, Convex functions, partial orderings, and statistical applications, Academic Press, 1992.
- S. Zaheer Ullah, M. Adil Khan, Y.M. Chu, A note on generalized convex functions, J Inequal Appl. 2019 (2019), 291. https://doi.org/10.1186/s13660-019-2242-0.
- D.E. Varberg, A. W. Roberts, Convex functions, Academic Press, New York-London, 1973.
- C. Dinu, Convex functions on time scales, Ann. Univ. Craiova, Math. Comp. Sci. Ser. 35 (2008), 87–96.
- R.P. Agarwal, D. O’Regan, S.H. Saker, Hardy type inequalities on time scales, Springer, 2016.
- R.P. Agarwal, D. O’Regan, S. Saker, Dynamic inequalities on time scales, Springer, 2014.
- E. Hopf, Über die zusammenhänge zwischen gewissen höheren differenzen-quotienten reeller funktionen einer reellen variablen und deren differenzierbarkeitseigenschaften, Ph.D. thesis, Norddeutsche Buchdr. u. Verlagsanst. (1926).
- T. Popoviciu, On some properties of functions of one or two variables réthem, Ph.D. thesis, Institutul de Arte Grafice "Ardealul (1933).
- T. Popoviciu, Les fonctions convexes, Actualites Sci. Ind. 992 (1945).
- P. Bullen, A criterion for n-convexity, Pac. J. Math. 36 (1971), 81–98. https://doi.org/10.2140/pjm.1971.36.81.
- R. Mikic, J. Pecˇaric´, Jensen-type inequalities on time scales for n-convex functions, Commun. Math. Anal. 21 (2018), 46–67.
- H.A. Baig, N. Ahmad, The weighted discrete dynamic inequalities for 4-convex functions, and its generalization on time scales with constant graininess function, J. Inequal. Appl. 2020 (2020), 168. https://doi.org/10.1186/s13660-020-02435-4.
- R.P. Agarwal, M. Bohner, Basic calculus on time scales and some of its applications, Results. Math. 35 (1999), 3–22. https://doi.org/10.1007/BF03322019.
- D. Zwick, A divided difference inequality for n-convex functions, J. Math. Anal. Appl. 104 (1984), 435–436. https://doi.org/10.1016/0022-247X(84)90008-8.
- R. Farwig, D. Zwick, Some divided difference inequalities for n-convex functions, J. Math. Anal. Appl. 108 (1985), 430–437. https://doi.org/10.1016/0022-247X(85)90036-8.
- I. Brnetic´, Inequalities for n-convex functions, J. Math. Inequal. 5 (2011), 193–197.
- I. Brnetić, Inequalities for convex and 3-log convex functions, Rad HAZU (515) (2013), 189–194.
- E. Isaacson, H.B. Keller, Analysis of numerical methods, Courier Corporation, 2012.