Weighted Ostrowski's Type Integral Inequalities for Mapping Whose First Derivative Is Bounded
Main Article Content
Abstract
The aim of paper is to develop the inequalities for L∞, Lp and L1 norms. Applications for some special weight functions and Perturbed expressions are also determined via Chebychev functional. We recaptured the previous results for different weights.
Article Details
References
- N. S. Burnett, P. Cerone, S. S. Dragomir, J. Roumeliotis, A. Sofo, a Survey on Ostrowski Type Inequalities for Twice Differentiable Mappings and Applications, Inequal. Theory Appl. 1 (2001), 24-30.
- H. Budak, M. Z. Sarikaya, A. Qayyum, New Refinements and Applications of Ostrowski Type Inequalities for Mappings Whose nth Derivatives Are of Bounded Variation, TWMS J. Appl. Eng. Math. 11 (2021), 424-435.
- P. Cerone, A New Ostrowski Type Inequality Involving Integral Means Over End Intervals, Tamkang J. Math. 33 (2002), 109–118. https://doi.org/10.5556/j.tkjm.33.2002.290.
- S. S. Dragomir, Better Bounds in Some Ostrowski-Gruss Type Inequalities, Tamkang J. Math. 32 (2001), 211–216. https://doi.org/10.5556/j.tkjm.32.2001.376.
- D. S. Mitrinović, J. E. Pečarić, A. M. Fink, Classical and New Inequalities in Analysis, Kluwer Academic Publishers, Dordrecht, 1993.
- M. Iftikhar, A. Qayyum, S. Fahad, M. Arslan, A New Version of Ostrowski Type Integral Inequalities for Different Differentiable Mapping, Open J. Math. Sci. 5 (2021), 353–359. https://doi.org/10.30538/oms2021.0170.
- M. A. Mustafa, A. Qayyum, T. Hussain, M. Saleem, Some Integral Inequalities for the Quadratic Functions of Bounded Variations and Application, Turk. J. Anal. Numb. Theory 10 (2022), 1–3. https://doi.org/10.12691/tjant-10-1-1.
- M. Matic, J. E. Pečarić, and N. Ujević, On New Estimation of the Remainder in Generalized Taylor’s Formula, Math. Inequal. Appl. 2 (1999), 343-361.
- J. Nasir, S. Qaisar, S. I. Butt, A. Qayyum, Some Ostrowski Type Inequalities for Mappings Whose Second Derivatives Are Preinvex Function via Fractional Integral Operator, AIMS Math. 7 (2022), 3303–3320. https://doi.org/10.3934/math.2022184.
- A. Ostrowski, Uber die Absolutabweichung einer differentienbaren Funktionen von ihren Integralmittelwert, Comment. Math. Helv. 10 (1938), 226–227.
- A. Qayyum, A Weighted Ostrowski Gruss Type Inequality for Twice Differentiable Mappings and Applications, Int. J. Math. Comput. 1 (2008), 63-71.
- A. Qayyum, M. Shoaib, M. Amer latif, A Generalized Inequality of Ostrowski Type for Twice Differentiable Bounded Mappings and Applications, Appl. Math. Sci. 8 (2014), 1889-1901.
- A. Qayyum, I. Faye, M. Shoaib, M. A. Latif, A Generalization of Ostrowski Type Inequality for Mappings Whose Second Derivatives Belong to L1 (ˆJ, ˇk) and Applications, Int. J. Pure Appl. Math. Sci. 98 (2015), 169-180.
- A. Qayyum, A. R. Kashif, M. Shoaib, I. Faye, Derivation and Applications of Inequalities of Ostrowski Type for n-Times Differentiable Mappings for Cumulative Distribution Function and Some Quadrature Rules, J. Nonlinear Sci. Appl. 9 (2016), 1844-1857.