A Plancherel Theorem On a Noncommutative Hypergroup
Main Article Content
Abstract
Let G be a locally compact hypergroup and let K be a compact sub-hypergroup of G. (G, K) is a Gelfand pair if Mc(G//K), the algebra of measures with compact support on the double coset G//K, is commutative for the convolution. In this paper, assuming that (G, K) is a Gelfand pair, we define and study a Fourier transform on G and then establish a Plancherel theorem for the pair (G, K).
Article Details
References
- W.R. Bloom, H. Heyer, Harmonic Analysis of Probability Measures on Hypergroups, de Gruyter Studies in Mathematics 20, Walter de Gruyter, Berlin, 1995.
- C.F. Dunkl, The Measure Algebra of a Locally Compact Hypergroup, Trans. Amer. Math. Soc. 179 (1973), 331–348. https://doi.org/10.1090/s0002-9947-1973-0320635-2.
- B.K. Germain, K. Kinvi, On Gelfand Pair Over Hypergroups, Far East J. Math. 132 (2021), 63–76. https://doi.org/10.17654/ms132010063.
- R.I. Jewett, Spaces With an Abstract Convolution of Measures, Adv. Math. 18 (1975), 1–101. https://doi.org/10.1016/0001-8708(75)90002-x.
- L. Nachbin, On the Finite Dimensionality of Every Irreducible Unitary Representation of a Compact Group, Proc. Amer. Math. Soc. 12 (1961), 11-12. https://doi.org/10.1090/S0002-9939-1961-0123197-5.
- K.A. Ross, Centers of Hypergroups, Trans. Amer. Math. Soc. 243 (1978), 251–269. https://doi.org/10.1090/s0002-9947-1978-0493161-2.
- R. Spector, Mesures Invariantes sur les Hypergroupes, Trans. Amer. Math. Soc. 239 (1978), 147–165. https://doi.org/10.1090/s0002-9947-1978-0463806-1.
- L. Székelyhidi, Spherical Spectral Synthesis on Hypergroups, Acta Math. Hungar. 163 (2020), 247–275. https://doi.org/10.1007/s10474-020-01068-9.
- K. Vati, Gelfand Pairs Over Hypergroup Joins, Acta Math. Hungar. 160 (2019), 101–108. https://doi.org/10.1007/s10474-019-00946-1.