On Intuitionistic Fuzzy β Generalized α Normal Spaces

Main Article Content

Abdulgawad A. Q. Al-Qubati
Hadba F. Al-Qahtani

Abstract

In this paper a new concept of generalized intuitionistic fuzzy topological space called intuitionistic fuzzy β generalized α normal space is introduced. Several characterizations of intuitionistic fuzzy β generalized α normal space, intuitionistic fuzzy strongly β generalized α normal and intuitionistic fuzzy strongly β generalized α regular spaces are studied. Moreover, the related intuitionistic fuzzy functions with intuitionistic fuzzy β generalized α normal spaces are investigated.

Article Details

References

  1. A. Al-Qubati, H.F. Al-Qahtani, On b-Separation Axioms in Intuistionistic Fuzzy Topological Spaces, Int. J. Math. Trends Technol. 21 (2015), 83-93.
  2. A. Al-Qubati, On b-Regularity and Normality in Intuistionistic Fuzzy Topological Spaces, J. Inform. Math. Sci. 9 (2017), 89-100.
  3. A. Al-Qubati, On Intuitionistic Fuzzy β and β ∗ -Normal Spaces, Int. J. Math. Anal. 12 (2018), 517 - 531. https://doi.org/10.12988/ijma.2018.8859.
  4. A. Al-Qubati, M.E. Sayed, H.F. Al-Qahtani, Small and Large Inductive Dimensions of Intuitionistic Fuzzy Topological Spaces, Nanosci. Nanotechnol. Lett. 12 (2020), 413–417. https://doi.org/10.1166/nnl.2020.3113.
  5. M.E. Abd EL-Monsef, R.A. Mahmoud, E.R. Lashin, β-Closure and β-Interior, Rep. J. Fac. Edu. Ain Shams Univ. 10 (1986), 235-245.
  6. H.A. Al-Qahtani, A. Al-Qubati, On Fuzzy Pre-Separation Axioms, J. Adv. Stud. Topol. 4 (2013), 1. https://doi.org/10.20454/jast.2013.663.
  7. K.T. Atanassov, Intuitionistic Fuzzy Sets, in: V. Sgurev (Ed.), VII ITKR’s Session, Sofia, (1983).
  8. K.T. Atanassov, Intuitionistic Fuzzy Sets, Fuzzy Sets Syst. 20 (1986), 87–96. https://doi.org/10.1016/s0165-0114(86)80034-3.
  9. G. Balasubramanian, Fuzzy β Open Sets and Fuzzy β Separation Axioms, Kybernetika, 35 (1999), 215-223. http://dml.cz/dmlcz/135282.
  10. S. Bayhan, D. Coker, Pairwise Separation Axioms in Intuitionistic Topological Spaces, Hacettepe J. Math. Stat. 34 (2005), 101-114.
  11. C.L. Chang, Fuzzy Topological Spaces, J. Math. Anal. Appl. 24 (1968), 182-190.
  12. D. Coker, M. Demirci, On Intuitionistic Fuzzy Points, Notes IFS. 1 (1995), 79-84.
  13. D. Coker, An Introduction to Intuitionistic Fuzzy Topological Spaces, Fuzzy Sets Syst. 88 (1997), 81-89. https://doi.org/10.1016/S0165-0114(96)00076-0.
  14. H. Gurcay, D. Coker, A.H. Es, On Fuzzy Continuity in Intuitionistic Fuzzy Topological Spaces, J. Fuzzy Math. 5 (1997), 365–378.
  15. M. Gomathi, D. Jayanthi, On Intuitionistic Fuzzy β Generalized α Closed Sets, Glob. J. Pure Appl. Math. 13 (2017), 2439-2455.
  16. M. Gomathi, D. Jayanthi, On Intuitionistic Fuzzy β Generalized α Continuous Mappings, Adv. Fuzzy Math. 12 (2017), 499-513.
  17. D. Jayanthi, Generalize β-Closed Sets in Intuitionistic Fuzzy Topological Spaces, Int. J. Adv. Found. Res. Sci. Eng. 1 (2014), 39-44.
  18. M. Saranya, D. Jayanthi, On Intuitionistic Fuzzy β Generalized Closed Sets, Int. J. Comput. Eng. Res. 6 (2016), 37-42.
  19. L.N.T. Nhon, B.Q. Thinh, pigp-Normal Topological Spaces, J. Adv. Stud. Topol. 4 (2012), 48-54. https://doi.org/10.20454/jast.2013.458.
  20. K. Vidyottama, R.K.C. Thakur, g-Pre Regular and g-Pre Normal Topological Spaces, Int. J. Adv. Res. Computer Sci. Software Eng. 5 (2015), 397-400.
  21. L.A. Zadeh, Fuzzy Sets, Inform. Control. 8 (1965), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X.