Modified Emden Type Oscillator Equations with Exact Harmonic Solutions
Main Article Content
Abstract
This paper is devoted to investigating the existence of exact harmonic solutions and limit cycles of certain modified Emden-type equations. The exact and general solutions obtained are in opposition to the predictions of classic existence theorems.
Article Details
References
- Y.J.F. Kpomahou, M. Nonti, A.B. Yessoufou, et al. On Isochronous Periodic Solution of a Generalized Emden Type Equation, (2021). https://vixra.org/abs/2101.0024.
- V.K. Chandrasekar, M. Senthilvelan, M. Lakshmanan, On the General Solution for the Modified Emden-Type Equation x¨ + αxx˙ + βx^3 = 0, J. Phys. A: Math. Theor. 40 (2007), 4717–4727. https://doi.org/10.1088/1751-8113/40/18/003.
- V.K. Chandrasekar, M. Senthilvelan, M. Lakshmanan, Unusual Liénard-Type Nonlinear Oscillator, Phys. Rev. E. 72 (2005), 066203. https://doi.org/10.1103/physreve.72.066203.
- D.W. Jordan, P. Smith, Nonlinear ordinary Differential Equations, 4 th ed, Oxford University Press, New York, 2007.
- D. Biswas, An Analysis of Modified Emden-Type Equation x¨ + αxx˙ + βx^3 = 0: Exact Explicit Analytical Solution Lagrangian, Hamiltonian for Arbitrary Values Of α and β, Nat. Sci. 11 (2019), 8-16. https://doi.org/10.4236/ns.2019.111002.
- M. Cioni, G. Villari, An Extension of Dragilev’s Theorem for the Existence of Periodic Solutions of the Liénard Equation, Nonlinear Anal.: Theory Methods Appl. 127 (2015), 55–70. https://doi.org/10.1016/j.na.2015.06.026.
- M. Sabatini, On the Period Function of Liénard Systems, J. Differ. Equ. 152 (1999), 467–487. https://doi.org/10.1006/jdeq.1998.3520.
- S.H. Strogatz, Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering (Studies in Nonlinearity) 1 st Edition, Studies Nonlinearity Westview Press, 1994.
- E.A. Doutètien, A.B. Yessoufou, Y.J.F. Kpomahou, et al. Unbounded Periodic Solution of a Modified Emden Type Equation, (2021). https://vixra.org/abs/2101.0002.
- D.W. Jordan, P. Smith, Nonlinear Ordinary Differential Equations: Problems and Solutions, a Sourcebook for Scientists and Engineers, Oxford University Press, New York, 2007.
- J. Akande, A.V.R. Yehossou, K.K.D. Adjaï, et al. On Identical Harmonic and Isochronous Periodic Oscillations of Lienard Type Equations, (2021). https://vixra.org/abs/2102.0082.
- K.K.D. Adjaï, M. Nonti, J. Akande, et al. On Sinusoidal and Isochronous Periodic Solutions of Lienard Type Equations With Only Damping, (2021). https://vixra.org/abs/2102.0132.
- J. Akande, A.V.R. Yehossou, K.K.D. Adjaï, et al. Sinusoidal and Isochronous Periodic Oscillations of Lienard Type Equations Without Restoring Force, (2021). https://vixra.org/abs/2102.0158.
- K.K.D. Adjaï, J. Akande, M. Nonti, et al. Limit Cycles of Polynomial and Nonpolynomial Systems of Differential Equations, (2021). https://doi.org/10.13140/RG.2.2.21709.56808.
- J. Akande, K.K.D. Adjaï, A.V.R. Yehossou, et al. Generalized Rayleigh-Van Der Pol Equations With Exact Algebraic Limit Cycles. (2022). https://doi.org/10.13140/RG.2.2.31951.20645.
- J. Llibre, A.C. Mereu, M.A. Teixeira, Limit Cycles of the Generalized Polynomial Liénard Differential Equations, Math. Proc. Camb. Phil. Soc. 148 (2010,) 363–383. https://doi.org/10.1017/S0305004109990193.
- R.E. Mickens, Oscillations in Planar Dynamic Systems, Series on Advances in Mathematics for Applied Sciences, Vol. 37, World Scientific, (1996).
- S. Saha, G. Gangopadhyay, Where the Lienard–Levinson–Smith (Lls) Theorem Cannot Be Applied for a Generalized Lienard System, (2021). https://arxiv.org/abs/2104.06043.
- S. Saha, G. Gangopadhyay, D.S. Ray, Reduction of Kinetic Equations to Liénard–Levinson–Smith Form: Counting Limit Cycles, Int. J. Appl. Comput. Math. 5 (2019), 46. https://doi.org/10.1007/s40819-019-0628-9.