Bipolar Fuzzy Sublattices and Ideals

Main Article Content

U. Venkata Kalyani
T. Eswarlal
J. KaviKumar
A. Iampan

Abstract

In this article, we introduce and study the theory of bipolar fuzzy sublattices (BFLs) and bipolar fuzzy ideals (BFIs) of a lattice, and some interesting properties of these BFLs and BFIs are established. Moreover, we study the properties of BFIs under lattice homomorphisms and also an application of BFLs.

Article Details

References

  1. K.M. Lee, Bipolar-Valued Fuzzy Sets and Their Operations, in: Proc. Int. Conf. on Intelligent Technologies, Bangkok, Thailand, (2000), 307-312.
  2. K.T. Atanassov, Intuitionistic Fuzzy Sets, Fuzzy Sets Syst. 20 (1986), 87-96. https://doi.org/10.1016/s0165-0114(86)80034-3.
  3. K.V. Thomas, L.S. Nair, Intuitionistic Fuzzy Sublattices and Ideals, Fuzzy Inform. Eng. 3 (2011), 321-331. https://doi.org/10.1007/s12543-011-0086-5.
  4. L.A. Zadeh, Fuzzy Sets, Inform. Control. 8 (1965), 338-353. https://doi.org/10.1016/s0019-9958(65)90241-x.
  5. N. Ajmal, K.V. Thomas, Fuzzy Lattices, Inform. Sci. 79 (1994), 271-291. https://doi.org/10.1016/0020-0255(94)90124-4.
  6. U. Venkata Kalyani, T. Eswarlal, Homomorphism on Bipolar Vague Normal Groups, Adv. Math., Sci. J. 9 (2020), 3315-3324. https://doi.org/10.37418/amsj.9.6.11.
  7. U. Venkata Kalyani, T. Eswarlal, Bipolar Vague Cosets, Adv. Math., Sci. J. 9 (2020), 6777-6787. https://doi.org/10.37418/amsj.9.9.36.
  8. S. Boudaoud, S. Milles, L. Zedam, Principal Intuitionistic Fuzzy Ideals and Filters on a Lattice, Discuss. Math. Gen. Algebra Appl. 40 (2020), 75-88. https://doi.org/10.7151/dmgaa.1325.
  9. S. Milles, The Lattice of Intuitionistic Fuzzy Topologies Generated by Intuitionistic Fuzzy Relations, Appl. Appl. Math. 15 (2020), 942-956. https://digitalcommons.pvamu.edu/aam/vol15/iss2/13.
  10. H. Zhang, Q. Li, Intuitionistic Fuzzy Filter Theory on Residuated Lattices, Soft Comput. 23 (2018), 6777-6783. https://doi.org/10.1007/s00500-018-3647-2.
  11. S. Milles, L. Zedam, E. Rak, Characterizations of Intuitionistic Fuzzy Ideals and Filters Based on Lattice Operations, J. Fuzzy Set Valued Anal. 2017 (2017), 143-159. https://doi.org/10.5899/2017/jfsva-00399.
  12. B. Nageswararao, N. Ramakrishna, T. Eswarlal, Vague Lattices, Studia Rosenthaliana, 12 (2020), 191-202.
  13. R.P. Rao, V.S. Kumar, A.P. Kumar, Rough Vague Lattices, J. Xi’an Univ. Architect. Technol. 9 (2019), 115-124.
  14. M. Gorjanac Ranitovic, A. Tepavcevic, A Lattice-Theoretical Characterization of the Family of Cut Sets of IntervalValued Fuzzy Sets, Fuzzy Sets Syst. 333 (2018), 1-10. https://doi.org/10.1016/j.fss.2016.11.014.
  15. K. Jacob, S.P. Tiwari, N. Shamsidah AH, et al. Restricted Cascade and Wreath Products of Fuzzy Finite Switchboard State Machines, Iran. J. Fuzzy Syst. 16 (2019), 75-88. https://doi.org/10.22111/ijfs.2019.4485.