Tri-Endomorphisms on BCH-Algebras
Main Article Content
Abstract
In this paper, we use the concept of endomorphisms and bi-endomorphisms as a model to create tri-endomorphisms on of BCH-algebras. We introduce the concepts of left tri-endomorphisms, central tri-endomorphisms, right tri-endomorphisms, and complete tri-endomorphisms of BCH-algebras and provide some properties. In addition, we obtain the properties between those tri-endomorphisms and some subsets of BCH-algebras.
Article Details
References
- R.K. Bandru, N. Rafi, On G-algebras, Sci. Magna, 8 (2012), 1-7.
- W.A. Dudek, J. Thomys, On decompositions of BCH-algebras, Math. Japon. 35 (1990), 1131-1138. https://cir.nii.ac.jp/crid/1572261549626076288.
- Q.P. Hu, X. Li, On BCH-algebras, Math. Seminar Notes, 11 (1983), 313-320.
- K. Iséki, An algebra related with a propositional calculus, Proc. Japan Acad. Ser. A Math. Sci. 42 (1966), 26-29. https://doi.org/10.3792/pja/1195522171.
- K. Iséki, On BCI-algebras, Math. Seminar Notes, 8 (1980), 125-130.