Geometry of Warped Product CR and Semi-Slant Submanifolds in Quasi-Para-Sasakian Manifolds

Main Article Content

Shamsur Rahman, Abdul Haseeb, Nargis Jamal

Abstract

In the present paper we study the existence or non-existence of warped product semi-slant submanifolds in quasi-para-Sasakian manifolds and prove that there are no proper warped product semi-slant submanifolds in a quasi-para-Sasakian manifold such that totally geodesic and totally umbilical submanifolds of warped product are proper semi-slant and invariant (or anti-invariant), respectively.

Article Details

References

  1. A. Haseeb, S. Pandey, R. Prasad, Some Results on η-Ricci Solitons in Quasi-Sasakian 3-Manifolds, Commun. Korean Math. Soc. 36 (2021), 377–387. https://doi.org/10.4134/CKMS.C200196.
  2. B. Sahin, Non-existence of Warped Product Semi-Slant Submanifolds of Kaehler Manifolds, Geom. Dedicata. 117 (2006), 195–202. https://doi.org/10.1007/s10711-005-9023-2.
  3. B.Y. Chen, Geometry of Warped Product CR-Submanifolds in Kaehler Manifolds, Monatsh. Math. 133 (2001), 177–195. https://doi.org/10.1007/s006050170019.
  4. B.Y. Chen, Geometry of Warped Product CR-Submanifolds in Kaehler Manifolds, II, Monatsh. Math. 134 (2001), 103–119. https://doi.org/10.1007/s006050170002.
  5. C.L. Bejan, M. Crasmareanu, Second Order Parallel Tensors and Ricci Solitons in 3-Dimensional Normal Paracontact Geometry, Ann. Glob. Anal. Geom. 46 (2014), 117–127. https://doi.org/10.1007/s10455-014-9414-4.
  6. D.E. Blair, Contact Manifolds in Riemannian Geometry, Springer Berlin Heidelberg, 1976. https://doi.org/10.1007/bfb0079307.
  7. I.K. Erken, Some Classes of 3-Dimensional Normal Almost Paracontact Metric Manifolds, Honam Math. J. 37 (2015), 457–468. https://doi.org/10.5831/HMJ.2015.37.4.457.
  8. I.K. Erken, On normal almost paracontact metric manifolds of dimension 3, Facta Univ. Ser. Math. Inform. 30 (2015), 777-788.
  9. J.L. Cabrerizo, A. Carriazo, L.M. Fernández, M. Fernández, Slant Submanifolds in Sasakian Manifolds, Glasgow Math. J. 42 (2000), 125–138. https://doi.org/10.1017/s0017089500010156.
  10. J. Wełyczko, On Legendre Curves in 3-Dimensional Normal Almost Paracontact Metric Manifolds, Results. Math. 54 (2009), 377–387. https://doi.org/10.1007/s00025-009-0364-2.
  11. K. Yano, On Structure Defined by a Tensor Field f of Type (1, 1), Satisfying f 3 +f = 0, Tensor (N. S.), 14 (1963), 99-109.
  12. M. Atceken, Warped Product Semi-Slant Submanifolds in Kenmotsu Manifolds, Turk. J. Math. 34 (2010), 425-432. https://doi.org/10.3906/mat-0901-6.
  13. M. A. Khan and C. Ozel, Ricci Curvature of Contact CR-Warped Product Submanifolds in Generalized Sasakian Space Forms Admitting a Trans-Sasakian Structure, Filomat. 35 (2021), 125–146. https://doi.org/10.2298/fil2101125k.
  14. M.I. Munteanu, A Note on Doubly Warped Product Contact C R-Submanifolds in Trans-Sasakian Manifolds, Acta Math. Hung. 116 (2007), 121–126. https://doi.org/10.1007/s10474-007-6013-x.
  15. R.L. Bishop, B. O’Neill, Manifolds of negative curvature, Trans. Amer. Math. Soc. 145 (1969), 1–49. https://doi.org/10.1090/s0002-9947-1969-0251664-4.
  16. S. Kaneyuki, F.L. Williams, Almost Paracontact and Parahodge Structures on Manifolds, Nagoya Math. J. 99 (1985), 173–187. https://doi.org/10.1017/S0027763000021565.
  17. S. Rahman, Some Results on the Geometry of Warped Product CR-Submanifolds in Quasi-Sasakian Manifold, Cubo, Math. J. 24 (2022), 105–114. https://doi.org/10.4067/S0719-06462022000100105.
  18. S. Rahman, M. S. Khan, A. Horaira, Warped Product Semi Slant Submanifold of Nearly Quasi Sasakian Manifold, Boson J. Modern Phys. 5 (2019), 443-453.
  19. S. Tanno, Quasi-Sasakian Structure of Rank 2p+1, J. Differ. Geom. 5 (1971), 317-324.
  20. S. Zamkovoy, Canonical Connections on Paracontact Manifolds, Ann. Glob. Anal. Geom. 36 (2009), 37–60. https://doi.org/10.1007/s10455-008-9147-3.
  21. Z. Olszak, Normal Almost Contact Metric Manifolds of Dimension Three, Ann. Polon. Math. 47 (1986), 41–50. https://doi.org/10.4064/ap-47-1-41-50.