Existence Suzuki Type Fixed Point Results in Ab-Metric Spaces With Application

Main Article Content

P. Naresh, G. Upender Reddy, B. Srinuvasa Rao

Abstract

In this paper, we give some applications to integral equations as well as homotopy theory via Suzuki contractive type common coupled fixed point results in complete Ab-metric space. We also furnish an example which supports our main result.

Article Details

References

  1. T. Suzuki, A Generalized Banach Contraction Principle That Characterizes Metric Completeness, Proc. Amer. Math. Soc. 136 (2008), 1861-1869. https://www.jstor.org/stable/20535364.
  2. I. Altun, A. Erduran, A Suzuki Type Fixed-Point Theorem, Int. J. Math. Math. Sci. 2011 (2011), 736063. https://doi.org/10.1155/2011/736063.
  3. M. Aggarwal, R. Chugh, R. Kamal, Suzuki-Type Fixed Point Results in G-Metric Spaces and Applications, Int. J. Computer Appl. 47 (2012), 14–17. https://doi.org/10.5120/7239-0073.
  4. N. Hussain, D. Ðorić, Z. Kadelburg, S. Radenović, Suzuki-Type Fixed Point Results in Metric Type Spaces, Fixed Point Theory Appl. 2012 (2012), 126. https://doi.org/10.1186/1687-1812-2012-126.
  5. K.P.R. Rao, K.R.K. Rao, V.C.C. Raju, A Suzuki Type Unique Common Coupled Fixed Point Theorem in Metric Spaces, Int. J. Innov. Res. Sci. Eng. Technol. 2 (2013), 5187-5192.
  6. T. Suzuki, A New Type of Fixed Point Theorem in Metric Spaces, Nonlinear Anal.: Theory Methods Appl. 71 (2009), 5313–5317. https://doi.org/10.1016/j.na.2009.04.017.
  7. I.A. Bakhtin, The Contraction Mapping Principle in Quasimetric Spaces, Funct. Anal. Unianowsk Gos. Ped. Inst. 30 (1989), 26–37.
  8. M. Abbas, B. Ali, Y.I. Suleiman, Generalized Coupled Common Fixed Point Results in Partially Ordered A-Metric Spaces, Fixed Point Theory Appl. 2015 (2015), 64. https://doi.org/10.1186/s13663-015-0309-2.
  9. M. Ughade, D. Turkoglu, S.R. Singh, R.D. Daheriya, Some Fixed Point Theorems in Ab-Metric Space, Br. J. Math. Computer Sci. 19 (2016), 1-24.
  10. N. Mlaiki, Y. Rohen, Some Coupled Fixed Point Theorems in Partially Ordered Ab-Metric Space, J. Nonlinear Sci. Appl. 10 (2017), 1731–1743. https://doi.org/10.22436/jnsa.010.04.35.
  11. R. Konchada, S.R. Chindirala, R.N. Chappa, A Novel Coupled Fixed Point Results Pertinent to Ab-Metric Spaces With Application to Integral Equations, Math. Anal. Contemp. Appl. 4 (2022), 63–83. https://doi.org/10.30495/maca.2022.1949822.1046.
  12. K. Ravibabu, C.S. Rao, C.R. Naidu, Applications to Integral Equations with Coupled Fixed Point Theorems in Ab-Metric Space, Thai J. Math. Spec. Iss. (2018), 148-167.
  13. D. Guo, V. Lakshmikantham, Coupled Fixed Points of Nonlinear Operators With Applications, Nonlinear Anal.: Theory Methods Appl. 11 (1987), 623–632. https://doi.org/10.1016/0362-546x(87)90077-0.
  14. T.G. Bhaskar, V. Lakshmikantham, Fixed Point Theorems in Partially Ordered Metric Spaces and Applications, Nonlinear Anal.: Theory Methods Appl. 65 (2006), 1379–1393. https://doi.org/10.1016/j.na.2005.10.017.
  15. M. Abbas, M. Ali Khan, S. Radenović, Common Coupled Fixed Point Theorems in Cone Metric Spaces for ωCompatible Mappings, Appl. Math. Comput. 217 (2010), 195–202. https://doi.org/10.1016/j.amc.2010.05.042.
  16. A. Aghajani, M. Abbas, E.P. Kallehbasti, Coupled Fixed Point Theorems in Partially Ordered Metric Spaces and Application, Math. Commun. 17 (2012), 497-509. https://hrcak.srce.hr/93280.
  17. E. Karapinar, Coupled Fixed Point on Cone Metric Spaces, Gazi Univ. J. Sci. 1 (2011), 51-58. https://dergipark.org.tr/en/download/article-file/83133.
  18. W. Long, B.E. Rhoades, M. Rajović, Coupled Coincidence Points for Two Mappings in Metric Spaces and Cone Metric Spaces, Fixed Point Theory Appl. 2012 (2012), 66. https://doi.org/10.1186/1687-1812-2012-66.
  19. J.G. Mehta, M.L. Joshi, On Coupled Fixed Point Theorem in Partially Ordered Complete Metric Space, Int. J. Pure Appl. Sci. Technol. 1 (2010), 87-92.
  20. W. Shantanawi, Some Common Coupled Fixed Point Results in Cone Metric Spaces, Int. J. Math. Anal. 4 (2010), 2381-2388.