On ωθ˜-µ-Open Sets in Generalized Topological Spaces

Main Article Content

Fatimah Al Mahri, Abdo Qahis

Abstract

In this paper analogous to [1], we introduce a new class of sets called ωθ˜-µ-open sets in generalized topological spaces which lies strictly between the class of θ˜µ-open sets and the class of ω-µ-open sets. We prove that the collection of ωθ˜-µ-open sets forms a generalized topology. Finally, several characterizations and properties of this class have been given.

Article Details

References

  1. S.A. Ghour, W. Zareer, Omega Open Sets in Generalized Topological Spaces, J. Nonlinear Sci. Appl. 9 (2016), 3010–3017. https://doi.org/10.22436/jnsa.009.05.93.
  2. K. Al-Zoubi, B. Al-Nashef, The Topology of ω-Open Subsets, Al-Manarah J. 9 (2003), 169-179.
  3. A. Al-Omari, M.S. Md Noorani, Regular Generalized ω-Closed Sets, Int. J. Math. Math. Sci. 2007 (2007), 16292. https://doi.org/10.1155/2007/16292.
  4. A. Al-Omari, T. Noiri, A Unified Theory of Contra-(µ, λ)-Continuous Functions in Generalized Topological Spaces, Acta Math. Hung. 135 (2012), 31–41. https://doi.org/10.1007/s10474-011-0143-x.
  5. Á. Császár, Generalized Topology, Generalized Continuity, Acta Math. Hung. 96 (2002), 351- 357. https://doi.org/10.1023/a:1019713018007.
  6. Á. Császár, Extremally Disconnected Generalized Topologies, Ann. Univ. Sci. Budapest. Eotvos Sect. Math. 47 (2004), 91-96.
  7. Á. Császár, Generalized Open Sets in Generalized Topologies, Acta Math. Hung. 106 (2005), 53-66. https://doi.org/10.1007/s10474-005-0005-5.
  8. Á. Császár, Product of Generalized Topologies, Acta Math. Hung. 123 (2009), 127-132. https://doi.org/10.1007/s10474-008-8074-x.
  9. C. Carpintero, E. Rosas, M. Salas, J. Sanabria, L. Vasquez, Generalization of ω-Closed Sets via Operators and Ideals, Sarajevo J. Math. 9 (2013), 293-301. https://doi.org/10.5644/sjm.09.2.13.
  10. C. Carpintero, N. Rajesh, E. Rosas, S. Saranyasri, On Slightly ω-Continuous Multifunctions, Punjab Univ. J. Math. (Lahore), 46 (2014), 51-57.
  11. E. Korczak-Kubiak, A. Loranty, R.J. Pawlak, Baire Generalized Topological Spaces, Generalized Metric Spaces and Infinite Games, Acta Math Hung. 140 (2013), 203–231. https://doi.org/10.1007/s10474-013-0304-1.
  12. H.Z. Hdeib, ω-Closed Mappings, Rev. Colomb. Mat. 16 (1982), 65-78.
  13. W.K. Min, Some Results on Generalized Topological Spaces and Generalized Systems, Acta Math Hung. 108 (2005), 171–181. https://doi.org/10.1007/s10474-005-0218-7.
  14. W.K. Min, Remarks on θ˜-Open Sets in Generalized Topological Spaces, Appl. Math. Lett. 24 (2011) 165–168. https://doi.org/10.1016/j.aml.2010.08.038.
  15. V. Renukadevi, P. Vimaladevi, Note on Generalized Topological Spaces With Hereditary Classes, Bol. Soc. Paran. Mat. 32 (2014), 89-97. https://doi.org/10.5269/bspm.v32i1.19401.
  16. R. Sen, B. Roy, Iµ∗ -Open Sets in Generalized Topological Spaces, Gen. Math. 27 (2019), 35-42.
  17. Z. Zhu, W. Li, Contra Continuity on Generalized Topological Spaces, Acta Math. Hung. 138 (2013), 34-43. https://doi.org/10.1007/s10474-012-0215-6.