On ωθ˜-µ-Open Sets in Generalized Topological Spaces
Main Article Content
Abstract
In this paper analogous to [1], we introduce a new class of sets called ωθ˜-µ-open sets in generalized topological spaces which lies strictly between the class of θ˜µ-open sets and the class of ω-µ-open sets. We prove that the collection of ωθ˜-µ-open sets forms a generalized topology. Finally, several characterizations and properties of this class have been given.
Article Details
References
- S.A. Ghour, W. Zareer, Omega Open Sets in Generalized Topological Spaces, J. Nonlinear Sci. Appl. 9 (2016), 3010–3017. https://doi.org/10.22436/jnsa.009.05.93.
- K. Al-Zoubi, B. Al-Nashef, The Topology of ω-Open Subsets, Al-Manarah J. 9 (2003), 169-179.
- A. Al-Omari, M.S. Md Noorani, Regular Generalized ω-Closed Sets, Int. J. Math. Math. Sci. 2007 (2007), 16292. https://doi.org/10.1155/2007/16292.
- A. Al-Omari, T. Noiri, A Unified Theory of Contra-(µ, λ)-Continuous Functions in Generalized Topological Spaces, Acta Math. Hung. 135 (2012), 31–41. https://doi.org/10.1007/s10474-011-0143-x.
- Á. Császár, Generalized Topology, Generalized Continuity, Acta Math. Hung. 96 (2002), 351- 357. https://doi.org/10.1023/a:1019713018007.
- Á. Császár, Extremally Disconnected Generalized Topologies, Ann. Univ. Sci. Budapest. Eotvos Sect. Math. 47 (2004), 91-96.
- Á. Császár, Generalized Open Sets in Generalized Topologies, Acta Math. Hung. 106 (2005), 53-66. https://doi.org/10.1007/s10474-005-0005-5.
- Á. Császár, Product of Generalized Topologies, Acta Math. Hung. 123 (2009), 127-132. https://doi.org/10.1007/s10474-008-8074-x.
- C. Carpintero, E. Rosas, M. Salas, J. Sanabria, L. Vasquez, Generalization of ω-Closed Sets via Operators and Ideals, Sarajevo J. Math. 9 (2013), 293-301. https://doi.org/10.5644/sjm.09.2.13.
- C. Carpintero, N. Rajesh, E. Rosas, S. Saranyasri, On Slightly ω-Continuous Multifunctions, Punjab Univ. J. Math. (Lahore), 46 (2014), 51-57.
- E. Korczak-Kubiak, A. Loranty, R.J. Pawlak, Baire Generalized Topological Spaces, Generalized Metric Spaces and Infinite Games, Acta Math Hung. 140 (2013), 203–231. https://doi.org/10.1007/s10474-013-0304-1.
- H.Z. Hdeib, ω-Closed Mappings, Rev. Colomb. Mat. 16 (1982), 65-78.
- W.K. Min, Some Results on Generalized Topological Spaces and Generalized Systems, Acta Math Hung. 108 (2005), 171–181. https://doi.org/10.1007/s10474-005-0218-7.
- W.K. Min, Remarks on θ˜-Open Sets in Generalized Topological Spaces, Appl. Math. Lett. 24 (2011) 165–168. https://doi.org/10.1016/j.aml.2010.08.038.
- V. Renukadevi, P. Vimaladevi, Note on Generalized Topological Spaces With Hereditary Classes, Bol. Soc. Paran. Mat. 32 (2014), 89-97. https://doi.org/10.5269/bspm.v32i1.19401.
- R. Sen, B. Roy, Iµ∗ -Open Sets in Generalized Topological Spaces, Gen. Math. 27 (2019), 35-42.
- Z. Zhu, W. Li, Contra Continuity on Generalized Topological Spaces, Acta Math. Hung. 138 (2013), 34-43. https://doi.org/10.1007/s10474-012-0215-6.