On the Behavior of the Nonlinear Difference Equation yn+1 = Ayn−1 + Byn−3 + Cyn−1+Dyn−3/Fyn−3−E

Main Article Content

Turki D. Alharbi, Elsayed M. Elsayed

Abstract

The theory of difference equations got a significant position in the applicable analysis. Therefore, studying the qualitative behavior of the difference equations is a fruitful area of research that has increasingly attracted many researchers. In this paper, we demonstrate the stability and the existence of periodic solutions of the nonlinear difference equation. Moreover, we provide some numerical simulations to confirm our results.

Article Details

References

  1. R.E. Mickens, Difference Equations: Theory and Applications, 2nd Ed, Chapman and Hall, New York, (1990).
  2. H.F. Huo, W.T. Li, Permanence and Global Stability of Positive Solutions of a Nonautonomous Discrete RatioDependent Predator-Prey Model, Discr. Dyn. Nat. Soc. 2005 (2005), 135–144. https://doi.org/10.1155/ddns.2005.135.
  3. G. Ladas, G. Tzanetopoulos, A. Tovbis, On May’s Host Parasitoid Model, J. Differ. Equ. Appl. 2 (1996), 195–204. https://doi.org/10.1080/10236199608808054.
  4. S. Stevic, A Global Convergence Results With Applications to Periodic Solutions, Indian J. Pure Appl. Math. 33 (2002), 45-53.
  5. V.L. Kocic, G. Ladas, Global Behavior of Nonlinear Difference Equations of Higher Order with Applications, Springer Netherlands, Dordrecht, 1993. https://doi.org/10.1007/978-94-017-1703-8.
  6. H. Sedaghat, Nonlinear Difference Equations, Springer Netherlands, Dordrecht, 2003. https://doi.org/10.1007/978-94-017-0417-5.
  7. E.C. Pielou, Population and Community Ecology, Gordon and Breach, New York, (1974).
  8. M. R. S. Kulenovic and G. Ladas, Dynamics of Second Order Rational Difference Equations with Open Problems and Conjectures, Chapman & Hall/ CRC Press, New York, (2001).
  9. EA. Grove and G. Ladas, Periodicities in Nonlinear Difference Equations. 1st Ed, Chapman & Hall/ CRC Press, New York, (2004).
  10. P. Cull, M.E. Flahive, R.O. Robson, Difference Equations: From Rabbits to Chaos, Springer, New York, (2005).
  11. T.D. Alharbi, E.M. Elsayed, Forms of Solution and Qualitative Behavior of Twelfth-Order Rational Difference Equation, Int. J. Differ. Equ. 17 (2022), 281-292.
  12. M.M. El-Dessoky, Studies on the Higher Order Difference Equation xn+1 = βxn−l + αxn−k + axn−t/bxn−t+c , J. Comput. Anal. Appl. 29 (2021), 116-131.
  13. E.M. Elsayed, B.S. Alofi, A.Q. Khan, Qualitative Behavior of Solutions of Tenth-Order Recursive Sequence Equation, Math. Probl. Eng. 2022 (2022), 5242325. https://doi.org/10.1155/2022/5242325.
  14. M.A. El-Moneam, E.M.E. Zayed, Dynamics of the Rational Difference Equation, Inform. Sci. Lett. 3 (2014), 45–53. https://doi.org/10.12785/isl/030202.
  15. Y. Kostrov, Z. Kudlak, On a Second-Order Rational Difference Equation with a Quadratic Term, Int. J. Differ. Equ. 11 (2016), 179-202.
  16. M. Avotina, On Three Second-Order Rational Difference Equations with Period-Two Solutions, Int. J. Differ. Equ. 9 (2014), 23-35.
  17. A. Asiri, M.M. El-Dessoky, E.M. Elsayed, Solution of a Third Order Fractional System of Difference Equations, J. Comput. Anal. Appl., 24 (2018), 444-453.
  18. S. Moranjkic, Z. Nurkanovic, Local and Global Dynamics of Certain Second-Order Rational Difference Equations Containing Quadratic Terms, Adv. Dyn. Syst. Appl. 12 (2017), 123-157.
  19. M.N. Phong, A Note on a System of Two Nonlinear Difference Equations, Electron. J. Math. Anal. Appl. 3 (2015), 170-179.
  20. W. Wang, J. Tian, Difference Equations Involving Causal Operators With Nonlinear Boundary Conditions, J. Nonlinear Sci. Appl. 8 (2015), 267-274.
  21. H.S. Alayachi, M.S.M. Noorani, A.Q. Khan, M.B. Almatrafi, Analytic Solutions and Stability of Sixth Order Difference Equations, Math. Probl. Eng. 2020 (2020), 1230979. https://doi.org/10.1155/2020/1230979.
  22. A.M. Alotaibi, M.A. El-Moneam, On the Dynamics of the Nonlinear Rational Difference Equation xn+1 = axn−m+δxn/β+γxn−k xn−1(xn−k +xn−1) , AIMS Math. 7 (2022), 7374-7384.
  23. J. Bektesevic, M. Mehuljic, V. Hadziabdic, Global Asymptotic Behavior of Some Quadratic Rational Second-Order Difference Equations, Int. J. Differ. Equ. 20 (2017), 169-183.
  24. E. M. Elsayed, K. N. Alshabi and F. Alzahrani, Qualitative Study of Solution of Some Higher Order Difference Equations, J. Comput. Anal. Appl. 26 (2019), 1179-1191.
  25. E.M. Elsayed, K.N. Alharbi, The Expressions and Behavior of Solutions for Nonlinear Systems of Rational Difference Equations, J. Innov. Appl. Math. Comput. Sci. 2 (2022), 78–91.
  26. E.M. Elsayed, A. Alshareef, Qualitative Behavior of A System of Second Order Difference Equations, Eur. J. Math. Appl. 1 (2021), 15. https://doi.org/10.28919/ejma.2021.1.15.
  27. E.M. Elsayed, N.H. Alotaibi, The Form of the Solutions and Behavior of Some Systems of Nonlinear Difference Equations, Dyn. Contin. Discr. Impuls. Syst. Ser. A: Math. Anal. 27 (2020), 283-297.
  28. E.M. Elsayed, H.S. Gafel, Some Systems of Three Nonlinear Difference Equations, J. Comput. Anal. Appl. 29 (2021), 86-108.
  29. E.M. Elsayed, J.G. Al-Juaid, H. Malaikah, On the Dynamical Behaviors of a Quadratic Difference Equation of Order Three, Eur. J. Math. Appl. 3 (2023), 1. https://doi.org/10.28919/ejma.2023.3.1.
  30. E.M. Elsayed, J.G. AL-Juaid, The Form of Solutions and Periodic Nature for Some System of Difference Equations, Fundam. J. Math. Appl. 6 (2023), 24-34. https://doi.org/10.33401/fujma.1166022.
  31. E.M. Elsayed, M. M. Alzubaidi, On a Higher-Order Systems of Difference Equations, Pure Appl. Anal. 2023 (2023), 2.
  32. E.M. Elsayed, B. Alofi, Stability Analysis and Periodictly Properties of a Class of Rational Difference Equations, MANAS J. Eng. 10 (2022), 203-210. https://doi.org/10.51354/mjen.1027797.
  33. E.M. Elasyed, M.T. Alharthi, The Form of the Solutions of Fourth Order Rational Systems of Difference Equations, Ann. Commun. Math. 5 (2022), 161-180.
  34. E.M. Elsayed, A. Alghamdi. Dynamics and Global Stability of Higher Order Nonlinear Difference Equation, J. Comput. Anal. Appl. 21 (2016), 493-503.
  35. E.M. Elsayed, A. Alshareef, Qualitative Behavior of A System of Second Order Difference Equations, Eur. J. Math. Appl. 1 (2021), 15. https://doi.org/10.28919/ejma.2021.1.15.
  36. M. Garic-Demirovic, M. Nurkanovic, Z. Nurkanovic, Stability, Periodicity and Neimark-Sacker Bifurcation of Certain Homogeneous Fractional Difference Equations, Int. J. Differ. Equ. 12 (2017), 27-53.
  37. M. Gümüş, R. Abo-Zeid, Qualitative Study of a Third Order Rational System of Difference Equations, Math. Morav. 25 (2021), 81-97.
  38. S. Kalabusic, M. Nurkanovic, Z. Nurkanovic, Global Dynamics of Certain Mix Monotone Difference Equation, Mathematics, 6 (2018), 10. https://doi.org/10.3390/math6010010.
  39. A. Khaliq, E. Elsayed, The Dynamics and Solution of Some Difference Equations, J. Nonlinear Sci. Appl. 9 (2016), 1052-1063.
  40. W.X. Ma, Global Behavior of a Higher-Order Nonlinear Difference Equation with Many Arbitrary Multivariate Functions, East Asian J. Appl. Math. 9 (2019), 643–650. https://doi.org/10.4208/eajam.140219.070519.
  41. S. Moranjkic, Z. Nurkanovic, Local and Global Dynamics of Certain Second-Order Rational Difference Equations Containing Quadratic Terms, Adv. Dyn. Syst. Appl. 12 (2017), 123-157.
  42. M. Saleh, A. Farhat, Global Asymptotic Stability of The Higher Order Equation xn+1 = axn+bxn−k/A+Bxn−k , J. Appl. Math. Comput. 55 (2017), 135-148.
  43. E.M.E. Zayed, On the Dynamics of a New Nonlinear Rational Difference, Dyn. Contin. Discr. Impuls. Syst. Ser. A. Math. Anal., 27 (2020), 153-165.