On Hybrid Pure Hyperideals in Ordered Hypersemigroups

Main Article Content

Hataikhan Sanpan, Pongsakorn Kitpratyakul, Somsak Lekkoksung

Abstract

In this paper, the concepts of hybrid pure hyperideals in ordered hypersemigroups are introduced and some algebraic properties of hybrid pure hyperideals are studied. We characterize weakly regular ordered hypersemigroups in terms of hybrid pure hyperideals. Finally, we introduce the concepts of hybrid weakly pure hyperideals and prove that the hybrid hyperideals are hybrid weakly pure hyperideals if such hybrid hyperideals satisfy the idempotent property.

Article Details

References

  1. J. Ahsan, M. Takahashi, Pure Spectrum of a Monoid With Zero, Kobe J. Math. 6 (1989), 163–181. https://cir.nii.ac.jp/crid/1571698601700142976.
  2. S. Anis, M. Khan, Y.B. Jun, Hybrid Ideals in Semigroups, Cogent Math. 4 (2017), 1352117. https://doi.org/10.1080/23311835.2017.1352117.
  3. T. Changphas, B. Davvaz, Hyperideal Theory in Ordered Semihypergroups, in: International Congress on Algebraic Hyperstructures and its Applications, Xanthi, (2014), 51-54.
  4. T. Changphas, B. Davvaz, Properties of Hyperideals in Ordered Semihypergroups, Italian J. Pure Appl. Math. 33 (2014), 425-432.
  5. T. Changphas, B. Davvaz, Bi-Hyperideals and Quasi-Hyperideals in Ordered Semigroups, Italian J. Pure Appl. Math. 35 (2015), 493-508.
  6. T. Changphas, B. Davvaz, On Pure Hyperideals in Ordered Semihypergroups, Bol. Math. 27 (2020), 63-74.
  7. T. Changphas, J. Sanborisoot, Pure Ideals in Ordered Semigroups, Kyungpook Math. J. 54 (2014), 123–129. https://doi.org/10.5666/KMJ.2014.54.1.123.
  8. P. Corsini, Sur les Semi-Hypergroups, Atti Soc. Fis. Math. Nat. 26 (1980), 363-372.
  9. P. Corsini, Prolegonmena of Hypergroup Theory, Aviani Editore, Tricesimo, 1993. https://cir.nii.ac.jp/crid/1570572699837077760.
  10. P. Corsini, V. Leoreanu-Fotea, Applications of Hyperstructure Theory, Advances in Mathematics, Kluwer Academic Publishers, Dordrecht, 2003.
  11. B. Davvaz, Semihypergroup Theory, Academic Press, Amsterdam, 2016.
  12. W.A. Dudek, Y.B. Jun, Int-Soft Interior Ideals of Semigroups, Quasigroups Related Syst. 22 (2014), 201-208.
  13. B. Elavarasan, Y.B. Jun, Regularity of Semigroups in Terms of Hybrid Ideals and Hybrid Bi-Ideals, Kragujevac J. Math. 46 (2022), 857-864.
  14. B. Elavarasan, K. Porselvi, Y.B. Jun, Hybrid Generalized Bi-Ideals in Semigroups, Int. J. Math. Computer Sci. 14 (2019), 601–612.
  15. Z. Gu, X. Tang, Characterizations of (Strongly) Ordered Regular Relations on Ordered Semihypergroups, J. Algebra. 465 (2016), 100–110. https://doi.org/10.1016/j.jalgebra.2016.07.010.
  16. D. Heidari, B. Davvaz, On Ordered Hyperstructures, U.P.B. Sci. Bull. Ser. A, 73 (2011), 85-96.
  17. K. Hila, B. Davvaz, K. Naka, On Quasi-Hyperideals in Semihypergroups, Commun. Algebra. 39 (2011), 4183–4194. https://doi.org/10.1080/00927872.2010.521932.
  18. Y.B. Jun, S.Z. Song, G. Muhiuddin, Hybrid Structures and Applications, Ann. Commun. Math. 1 (2018), 11-25.
  19. N. Kehayopulu, From Ordered Semigroups to Ordered Hypersemigroups, Turk. J. Math. 43 (2019), 21–35. https://doi.org/10.3906/mat-1806-104.
  20. F. Marty, Sur Une Generalization de la Notion de Groupe, Proceedings of the 8th Congress Math. Scandinaves, Stockholm, (1934), 45-49.
  21. D. Molodtsov, Soft Set Theory-first Results, Computers Math. Appl. 37 (1999), 19–31. https://doi.org/10.1016/s0898-1221(99)00056-5.
  22. G. Muhiuddin, A. Mahboob, Int-Soft Ideals Over the Soft Sets in Ordered Semigroups, AIMS Math. 5 (2020), 2412–2423. https://doi.org/10.3934/math.2020159.
  23. S.Z. Song, H.S. Kim, Y.B. Jun, Ideal Theory in Semigroups Based on Intersectional Soft Sets, Sci. World J. 2014 (2014), 136424. https://doi.org/10.1155/2014/136424.
  24. Y. Xie, J. Liu, L. Wang, Further Studies on H∞ Filtering Design for Fuzzy System With Known or Unknown Premise Variables, IEEE Access. 7 (2019), 121975–121981. https://doi.org/10.1109/access.2019.2938797.
  25. L.A. Zadeh, Fuzzy Sets, Inform. Control, 8 (1965), 338–353.