A Note on LP-Kenmotsu Manifolds Admitting Conformal Ricci-Yamabe Solitons
Main Article Content
Abstract
In the current note, we study Lorentzian para-Kenmotsu (in brief, LP-Kenmotsu) manifolds admitting conformal Ricci-Yamabe solitons (CRYS) and gradient conformal Ricci-Yamabe soliton (gradient CRYS). At last by constructing a 5-dimensional non-trivial example we illustrate our result.
Article Details
References
- N. Basu, A. Bhattacharyya, Conformal Ricci Soliton in Kenmotsu Manifold, Glob. J. Adv. Res. Class. Mod. Geom. 4 (2015), 15-21.
- A. M. Blaga, Some Geometrical Aspects of Einstein, Ricci and Yamabe Solitons, J. Geom. Symmetry Phys. 52 (2019), 17-26. https://doi.org/10.7546/jgsp-52-2019-17-26.
- S. Chidananda, V. Venkatesha, Yamabe and Riemann Solitons on Lorentzian Para-Sasakian Manifolds, Commun. Korean Math. Soc. 37 (2022), 213-228. https://doi.org/10.4134/CKMS.C200365.
- U.C. De, A. Sardar, K. De, Ricci-Yamabe Solitons and 3-Dimensional Riemannian Manifolds, Turk. J. Math. 46 (2022), 1078-1088. https://doi.org/10.55730/1300-0098.3143.
- A.E. Fischer, An Introduction to Conformal Ricci Flow, Class. Quantum Grav. 21 (2004), S171-S218. https://doi.org/10.1088/0264-9381/21/3/011.
- D. Ganguly, S. Dey, A. Ali, A. Bhattacharyya, Conformal Ricci Soliton and Quasi-Yamabe Soliton on Generalized Sasakian Space Form, J. Geom. Phys. 169 (2021), 104339. https://doi.org/10.1016/j.geomphys.2021.104339.
- S. Güler, M. Crasmareanu, Ricci–Yamabe Maps for Riemannian Flows and Their Volume Variation and Volume Entropy, Turk. J. Math. 43 (2019), 2631-2641. https://doi.org/10.3906/mat-1902-38.
- R.S. Hamilton, The Ricci Flow on Surfaces, Mathematics and General Relativity, Contemp. Math. 71 (1988), 237-262.
- A. Haseeb, M. Bilal, S.K. Chaubey, A.A.H. Ahmadini, ζ-Conformally Flat LP-Kenmotsu Manifolds and Ricci–Yamabe Solitons, Mathematics, 11 (2023), 212. https://doi.org/10.3390/math11010212.
- A. Haseeb, S.K. Chaubey, M.A. Khan, Riemannian 3-Manifolds and Ricci-Yamabe Solitons, Int. J. Geom. Methods Mod. Phys. 20 (2023), 2350015. https://doi.org/10.1142/s0219887823500159.
- A. Haseeb, R. Prasad, Certain Results on Lorentzian Para-Kenmotsu Manifolds, Bol. Soc. Parana. Mat. 39 (2021), 201–220. https://doi.org/10.5269/bspm.40607.
- A. Haseeb, R. Prasad, Some results on Lorentzian para-Kenmotsu manifolds, Bull. Transilvania Univ. Brasov. 13(62) (2020), 185-198. https://doi.org/10.31926/but.mif.2020.13.62.1.14.
- Y. Li, A. Haseeb, M. Ali, LP-Kenmotsu Manifolds Admitting η-Ricci Solitons and Spacetime, J. Math. 2022 (2022), 6605127. https://doi.org/10.1155/2022/6605127.
- M.A. Lone, I.F. Harry, Ricci Solitons on Lorentz-Sasakian Space Forms, J. Geom. Phys. 178 (2022), 104547. https://doi.org/10.1016/j.geomphys.2022.104547.
- Pankaj, S.K. Chaubey, R. Prasad, Three-Dimensional Lorentzian Para-Kenmotsu Manifolds and Yamabe Solitons, Honam Math. J. 43 (2021), 613-626. https://doi.org/10.5831/HMJ.2021.43.4.613.
- J.P. Singh, M. Khatri, On Ricci-Yamabe Soliton and Geometrical Structure in a Perfect Fluid Spacetime, Afr. Mat. 32 (2021), 1645–1656. https://doi.org/10.1007/s13370-021-00925-2.
- H.I. Yoldaş, On Kenmotsu Manifolds Admitting η-Ricci-Yamabe Solitons, Int. J. Geom. Methods Mod. Phys. 18 (2021), 2150189. https://doi.org/10.1142/s0219887821501899.
- K. Yano, Integral Formulas in Riemannian Geometry, Pure and Applied Mathematics, Vol. I, Marcel Dekker, New York, 1970.
- K. Yano, M. Kon, Structures on Manifolds, World Scientific Publishing Co., Singapore, 1984.
- P. Zhang, Y. Li, S. Roy, S. Dey, A. Bhattacharyya, Geometrical Structure in a Perfect Fluid Spacetime with Conformal Ricci-Yamabe Soliton, Symmetry 14 (2022), 594. https://doi.org/10.3390/sym14030594.