Asymptotic Behavior of Solution for Coupled Reaction Diffusion System by Order m

Main Article Content

Mebarki Maroua, Barrouk Nabila

Abstract

The aim of this paper is to prove that asymptotic behavior in the time of solutions for the weakly coupled reaction diffusion system:
∂ui/∂t − di∆ui = fi (u1, u2, …, um) in Ω×R+,
∂ui/∂η = 0 in ∂Ω×R+,      (0.1)
ui(., 0) = ui0(.) in Ω,
where Ω is an open bounded domain of class C1 in Rn, ui(t, x), i=1, m, t≥0, x∈Ω are real valued functions. We treat the system (0.1) as a dynamical system in C(Ω) × C(Ω) × ... × C(Ω) and apply Lyapunov type stability techniques. A key ingredient in this analysis is a result which establishes that the orbits of the dynamical system are precompact in C(Ω) × C(Ω) × ... × C(Ω). As a consequence of Arzela-Ascoli theorem, this will be satisfied if the orbits are, for example, uniformly bounded in C1(Ω) × C1(Ω) × ... × C1(Ω) for t>0.

Article Details

References

  1. S. Abdelmalek, S. Kouachi, Proof of Existence of Global Solutions Form-Component Reaction–Diffusion Systems With Mixed Boundary Conditions via the Lyapunov Functional Method, J. Phys. A: Math. Theor. 40 (2007), 12335–12350. https://doi.org/10.1088/1751-8113/40/41/005.
  2. N.D. Alikakos, LP -Bounds of Solutions of Reaction-Diffusion Equations, Commun. Part. Differ. Equ. 4 (1979), 827–868. https://doi.org/10.1080/03605307908820113.
  3. J.D. Avrin, Qualitative Theory for a Model of Laminar Flames With Arbitrary Nonnegative Initial Data, J. Differ. Equ. 84 (1990), 290-308. https://doi.org/10.1016/0022-0396(90)90080-9.
  4. A. Barabanova, On the Global Existence of Solutions of a Reaction Diffusion Equation With Exponential Nonlinearity, Proc. Amer. Math. Soc. 122 (1994), 827-831.
  5. W. Bouarifi, N.E. Alaa, S. Mesbahi, Global Existence of Weak Solutions for Parabolic Triangular Reaction Diffusion Systems Applied to a Climate Model, Ann. Univ. Craiova, Math. Computer Sci. Ser. 42 (2015), 80-97.
  6. M.G. Crandall, A. Pazy, L. Tartar, Remarks on Generators of Analytic Semigroups, Israel J. Math. 32 (1979), 363–374. https://doi.org/10.1007/bf02760465.
  7. P.V. Danckwerts, Gas-Liquid Reactions, McGraw-Hill, New York, (1970).
  8. S.R. De Groot, P. Mazur, Nonequilibrium Thermodynamics, North-Holland, Amsterdam, (1962).
  9. A. Haraux, M. Kirane, Estimations C1 Pour des Problèmes Paraboliques Semi-lineaires, Ann. Fac. Sci. Toulouse Math. 5 (1983), 265-280.
  10. A. Haraux, A. Youkana, On a Result of K. Masuda Concerning Reaction-Diffusion Equations, Tohoku Math. J. 40 (1988), 159-163. https://doi.org/10.2748/tmj/1178228084.
  11. M. Kirane, Global Bounds and Asysmptotics for a System of Reaction-Diffusion Equations, J. Math. Anal. Appl. 138 (1989), 328-342.
  12. S. Kouachi, Global Existence of Solutions to Reaction Diffusion Systems via a Lyapunov Functional, Electron. J. Differ. Equ. 2001 (2001), 68.
  13. S. Kouachi, A. Youkana, Global existence and asymptotics for a class of reaction diffusion systems, Bull. Polish Acad. Sci. Math. 49 (2001).
  14. K. Masuda, On the Global Existence and Asymptotic Behavior of Solutions of Reaction-Diffusion Equations, Hokkaido Math. J. 12 (1983), 360-370. https://doi.org/10.14492/hokmj/1470081012.
  15. M. Mebarki, A. Moumeni, Global Solution of System Reaction Diffusion With Full Matrix, Glob. J. Math. Anal. (2015), 04-25.
  16. A. Moumeni, M. Dehimi, Global Existence Solutions of a System for Reaction Diffusion, Int. J. Math. Arch. 4 (2013), 122-129.
  17. B. Rebiai, S. Benachour, Global Classical Solutions for Reaction–diffusion Systems With Nonlinearities of Exponential Growth, J. Evol. Equ. 10 (2010), 511–527. https://doi.org/10.1007/s00028-010-0059-x.
  18. F. Rothe, Global Existence of Reaction-Diffusion Systems, Lecture Notes in Mathematics, 1072, Springer, Berlin, (1984).
  19. A. Pazy, Semi-Groups of Linear Operators and Applications to Partial Differential Equations, Springer, New York, (1983).