Asymptotic Behavior of Solution for Coupled Reaction Diffusion System by Order m

Main Article Content

Mebarki Maroua, Barrouk Nabila


The aim of this paper is to prove that asymptotic behavior in the time of solutions for the weakly coupled reaction diffusion system:
∂ui/∂t − di∆ui = fi (u1, u2, …, um) in Ω×R+,
∂ui/∂η = 0 in ∂Ω×R+,      (0.1)
ui(., 0) = ui0(.) in Ω,
where Ω is an open bounded domain of class C1 in Rn, ui(t, x), i=1, m, t≥0, x∈Ω are real valued functions. We treat the system (0.1) as a dynamical system in C(Ω) × C(Ω) × ... × C(Ω) and apply Lyapunov type stability techniques. A key ingredient in this analysis is a result which establishes that the orbits of the dynamical system are precompact in C(Ω) × C(Ω) × ... × C(Ω). As a consequence of Arzela-Ascoli theorem, this will be satisfied if the orbits are, for example, uniformly bounded in C1(Ω) × C1(Ω) × ... × C1(Ω) for t>0.

Article Details


  1. S. Abdelmalek, S. Kouachi, Proof of Existence of Global Solutions Form-Component Reaction–Diffusion Systems With Mixed Boundary Conditions via the Lyapunov Functional Method, J. Phys. A: Math. Theor. 40 (2007), 12335–12350.
  2. N.D. Alikakos, LP -Bounds of Solutions of Reaction-Diffusion Equations, Commun. Part. Differ. Equ. 4 (1979), 827–868.
  3. J.D. Avrin, Qualitative Theory for a Model of Laminar Flames With Arbitrary Nonnegative Initial Data, J. Differ. Equ. 84 (1990), 290-308.
  4. A. Barabanova, On the Global Existence of Solutions of a Reaction Diffusion Equation With Exponential Nonlinearity, Proc. Amer. Math. Soc. 122 (1994), 827-831.
  5. W. Bouarifi, N.E. Alaa, S. Mesbahi, Global Existence of Weak Solutions for Parabolic Triangular Reaction Diffusion Systems Applied to a Climate Model, Ann. Univ. Craiova, Math. Computer Sci. Ser. 42 (2015), 80-97.
  6. M.G. Crandall, A. Pazy, L. Tartar, Remarks on Generators of Analytic Semigroups, Israel J. Math. 32 (1979), 363–374.
  7. P.V. Danckwerts, Gas-Liquid Reactions, McGraw-Hill, New York, (1970).
  8. S.R. De Groot, P. Mazur, Nonequilibrium Thermodynamics, North-Holland, Amsterdam, (1962).
  9. A. Haraux, M. Kirane, Estimations C1 Pour des Problèmes Paraboliques Semi-lineaires, Ann. Fac. Sci. Toulouse Math. 5 (1983), 265-280.
  10. A. Haraux, A. Youkana, On a Result of K. Masuda Concerning Reaction-Diffusion Equations, Tohoku Math. J. 40 (1988), 159-163.
  11. M. Kirane, Global Bounds and Asysmptotics for a System of Reaction-Diffusion Equations, J. Math. Anal. Appl. 138 (1989), 328-342.
  12. S. Kouachi, Global Existence of Solutions to Reaction Diffusion Systems via a Lyapunov Functional, Electron. J. Differ. Equ. 2001 (2001), 68.
  13. S. Kouachi, A. Youkana, Global existence and asymptotics for a class of reaction diffusion systems, Bull. Polish Acad. Sci. Math. 49 (2001).
  14. K. Masuda, On the Global Existence and Asymptotic Behavior of Solutions of Reaction-Diffusion Equations, Hokkaido Math. J. 12 (1983), 360-370.
  15. M. Mebarki, A. Moumeni, Global Solution of System Reaction Diffusion With Full Matrix, Glob. J. Math. Anal. (2015), 04-25.
  16. A. Moumeni, M. Dehimi, Global Existence Solutions of a System for Reaction Diffusion, Int. J. Math. Arch. 4 (2013), 122-129.
  17. B. Rebiai, S. Benachour, Global Classical Solutions for Reaction–diffusion Systems With Nonlinearities of Exponential Growth, J. Evol. Equ. 10 (2010), 511–527.
  18. F. Rothe, Global Existence of Reaction-Diffusion Systems, Lecture Notes in Mathematics, 1072, Springer, Berlin, (1984).
  19. A. Pazy, Semi-Groups of Linear Operators and Applications to Partial Differential Equations, Springer, New York, (1983).