A Novel Approach for Digital Image Compression in Some Fixed Point Results on Complete G-metric Space Using Comparison Function

Main Article Content

R. Anna Thirumalai, S. Thalapathiraj

Abstract

In the present time world, digital images are crucial for various applications, that includes the medical industry, aircraft and satellite imaging, underwater imaging and so on. For this huge quantities of digital images are produced and used by these applications. For a variety of reasons, these images also need to be transmitted and stored. Therefore, a technique known as compression is applied to resolve this storage issue while transmitting these images. In this article, by extending some unique fixed point theorem results for comparison function on a complete symmetric G-metric space are used and it is a new approach. Moreover, this paper focuses on a compression method using the new structure of extended G-contraction mapping as it assists in compressing the size of the image. Thus, grayscale images are compressed using extended G-contraction mapping. And thus, grayscale images can be represented as matrices in this structure (pixel values). Also, similar images of reduced size can be obtained using an appropriate matrix G-metric and extended G-contraction mapping. The size of the matrix can be substantially reduced without losing any quality by controlling the order of sub matrices. These images are easy to store and transmit, with little variation between the original and contracted image.

Article Details

References

  1. S. Banach, Sur les Opérations dans les Ensembles Abstraits et Leur Application aux Équations Intégrales, Fundam. Math. 3 (1922), 133–181.
  2. S. Gähler, 2-Metrische Räume und Ihre Topologische Struktur, Math. Nachr. 26 (1963), 115–148. https://doi.org/10.1002/mana.19630260109.
  3. B.C. Dhage, A New Approach to Generalized Metric Spaces, PhD Thesis, Marathwada, Aurangabad, India, (1963).
  4. Z. Mustafa, B. Sims, Some Remarks Concerning D-Metric Spaces, In: Proceedings of the International Conferences on Fixed Point Theory and Applications, Valencia, Spain, (2003), 189–198.
  5. Z. Mustafa, B. Sims, A New Approach to Generalized Metric Spaces, J. Nonlinear Convex Anal. 7 (2006), 289–297.
  6. Z. Mustafa, B. Sims, Fixed Point Theorems for Contractive Mappings in Complete G-Metric Spaces, Fixed Point Theory Appl. 2009 (2009), 917175. https://doi.org/10.1155/2009/917175.
  7. L.G. Huang, X. Zhang, Cone Metric Spaces and Fixed Point Theorems of Contractive Mappings, J. Math. Anal. Appl. 332 (2007), 1468–1476. https://doi.org/10.1016/j.jmaa.2005.03.087.
  8. A. Azam, B. Fisher, M. Khan, Common Fixed Point Theorems in Complex Valued Metric Spaces, Numer. Funct. Anal. Optim. 32 (2011), 243–253. https://doi.org/10.1080/01630563.2011.533046.
  9. A. Rosenfeld, Digital Topology, Amer. Math. Mon. 86 (1979), 621–630. https://doi.org/10.1080/00029890.1979.11994873.
  10. S. Han, Connected Sum of Digital Closed Surfaces, Inform. Sci. 176 (2006), 332–348. https://doi.org/10.1016/j.ins.2004.11.003.
  11. O. Ege, I. Karaca, Lefschetz Fixed Point Theorem for Digital Images, Fixed Point Theory Appl. 2013 (2013), 253. https://doi.org/10.1186/1687-1812-2013-253.
  12. O. Ege, I. Karaca, Banach Fixed Point Theorem for Digital Images, J. Nonlinear Sci. Appl. 08 (2016), 237–245. https://doi.org/10.22436/jnsa.008.03.08.
  13. S. Han, Banach Fixed Point Theorem From the Viewpoint of Digital Topology, J. Nonlinear Sci. Appl. 09 (2016), 895–905. https://doi.org/10.22436/jnsa.009.03.19.
  14. S. Thalapathiraj, B. Baskaran, J. Arunnehru, Novel Approach for Texture Feature Extraction and Classification of Satellite Images Using Modified Hilbert Matrix, AIP Conf. Proc. 2112 (2019), 020154. https://doi.org/10.1063/1.5112339.
  15. B. Baskaran, C. Rajesh, Fixed Point Theorems for Mapping on Complete G-Metric Space, Int. J. Innov. Res. Technol. 2 (2015), 30–33.
  16. B. Baskaran, C. Rajesh, Some Results on Fixed Points of Asymptotically Regular Mappings, Int. J. Math. Anal. 8 (2014), 2469–2474. https://doi.org/10.12988/ijma.2014.49279.
  17. I. Karaca, O. Ege, Some Results on Simplicial Homology Groups of 2D Digital Images, Int. J. Inform. Comput. Sci. 1 (2012), 198–203.
  18. A. Jawaharlalnehru, T. Sambandham, V. Sekar, et al. Target Object Detection from Unmanned Aerial Vehicle (UAV) Images Based on Improved YOLO Algorithm, Electronics. 11 (2022), 2343. https://doi.org/10.3390/electronics11152343.
  19. L. Boxer, Digitally Continuous Functions, Pattern Recognit. Lett. 15 (1994), 833–839. https://doi.org/10.1016/0167-8655(94)90012-4.
  20. L. Boxer, A Classical Constructions for the Digital Fundamental Group, J. Math. Imaging Vis. 10 (1999), 51–62. https://doi.org/10.1023/a:1008370600456.
  21. L. Boxer, Properties of Digital Homotopy, J. Math. Imaging Vis. 22 (2005), 19–26. https://doi.org/10.1007/s10851-005-4780-y.
  22. A.C.M. Ran, M.C.B. Reurings, A Fixed Point Theorem in Partially Ordered Sets and Some Applications to Matrix Equations, Proc. Amer. Math. Soc. 132 (2004), 1435–1443.
  23. Sanjay Kumar Tiwari, Himanshu Kumar Pandey, Fixed Point Theorem in S-Metric Space, PanAmer. Math. J. 31 (2021), 19–28.
  24. T.B. Singh, G.A.H. Sharma, Y.M. Singh, M.R. Singh, Common Fixed Point Theorems for Six Self-Mappings on SMetric Spaces, Int. J. Anal. Appl. 19 (2021), 794–811. https://doi.org/10.28924/2291-8639-19-2021-794.
  25. A. Khan, P.N. Pathak, S. Sharma, G. Verma, V. Kumar, J.P. Tripathi, Fixed Point Theorems Using Comparison Functions View to Dislocated Quasi-Metric Spaces, ECS Trans. 107 (2022), 11969–11980. https://doi.org/10.1149/10701.11969ecst.
  26. J. Arunnehru, S. Thalapathiraj, R. Dhanasekar, L. Vijayaraja, R. Kannadasan, A.A. Khan, M.A. Haq, M. Alshehri, M.I. Alwanain, I. Keshta, Machine Vision-Based Human Action Recognition Using Spatio-Temporal Motion Features (STMF) with Difference Intensity Distance Group Pattern (DIDGP), Electronics. 11 (2022), 2363. https://doi.org/10.3390/electronics11152363.
  27. W. Shatanawi, A. Pitea, R. Lazović, Contraction Conditions Using Comparison Functions on b-Metric Spaces, Fixed Point Theory Appl. 2014 (2014), 135. https://doi.org/10.1186/1687-1812-2014-135.
  28. N. Hussain, Z. Kadelburg, S. Radenović, F. Al-Solamy, Comparison Functions and Fixed Point Results in Partial Metric Spaces, Abstr. Appl. Anal. 2012 (2012), 605781. https://doi.org/10.1155/2012/605781.
  29. R.K. Vats, S. Kumar, V. Sihag, Common Fixed Point Theorem For Expansive Mappings In G-metric Spaces, J. Math. Comput. Sci. 06 (2013), 60–71. https://doi.org/10.22436/jmcs.06.01.06.
  30. A. Choudhury, T. Som, Few Common Fixed Point Results For Weakly Commuting Mappings, J. Math. Comput. Sci. 06 (2013), 27–35. https://doi.org/10.22436/jmcs.06.01.04.
  31. Z. Mustafa, M.M.M. Jaradat, H.M. Jaradat, A Remarks on the Paper "Some Fixed Point Theorems for Generalized Contractive Mappings in Complete Metric Spaces", J. Math. Anal. 8 (2017), 17–22.
  32. Z. Mustafa, M.M.M. Jaradat, A. Ansari, F. Gu, H. Zheng, S. Radenović, M.S. Bataineh, Common Fixed Point Theorems for Two Pairs of Self-Mappings in Partial Metric Space Using C-Class Functions on (ψ, φ)-Contractive Condition, J. Math. Comput. Sci. 18 (2018), 216–231. https://doi.org/10.22436/jmcs.018.02.09.
  33. S. Vaijayanthi, J. Arunnehru, Human Emotion Recognition from Body Posture with Machine Learning Techniques, in: M. Singh, V. Tyagi, P.K. Gupta, J. Flusser, T. Ören (Eds.), Advances in Computing and Data Sciences, Springer International Publishing, Cham, 2022: pp. 231–242. https://doi.org/10.1007/978-3-031-12638-3_20.
  34. M. Kumar, S. Arora, M. Imdad, W. M. Alfaqih, Coincidence and common fixed point results via simulation functions in G-metric spaces, J. Math. Comput. Sci. 19 (2019), 288–300. https://doi.org/10.22436/jmcs.019.04.08.
  35. D. Lateef, Fisher Type Fixed Point Results in Controlled Metric Spaces, J. Math. Comput. Sci. 20 (2020), 234–240. https://doi.org/10.22436/jmcs.020.03.06.
  36. S. M. Abusalim, Z. M. Fadail, New Coupled and Common Coupled Fixed Point Results With Generalized c-Distance on Cone b-Metric Spaces, J. Math. Comput. Sci. 25 (2021), 209–218. https://doi.org/10.22436/jmcs.025.03.01.
  37. A. El Haddouchi, B. Marzouki, A generalized fixed point theorem in G-metric space, J. Anal. Appl. 17 (2019), 89–105.
  38. N. Kumar, M. Kumar, Ashish, Fixed Point Theory for Simulation Functions in G-Metric Spaces: A Novel Approach, Adv. Fixed Point Theory, 12 (2022), 5. https://doi.org/10.28919/afpt/7256.
  39. S. Koirala, N.P. Pahari, Some Results on Fixed Point Theory in G–metric Space, Int. J. Math. Trends Technol. 67 (2021), 150–156. https://doi.org/10.14445/22315373/ijmtt-v67i5p516.
  40. G. Bhargavi, J. Arunnehru, Deep Learning Framework for Landslide Severity Prediction and Susceptibility Mapping, Intell. Autom. Soft Comput. 36 (2023), 1257–1272. https://doi.org/10.32604/iasc.2023.034335.