Powered Inverse Rayleigh Distribution Using DUS Transformation

Main Article Content

M. I. Khan, Abdelfattah Mustafa

Abstract

This article reports an extension of powered inverse Rayleigh distribution via DUS transformation, named DUS-Powered Inverse Rayleigh (DUS-PIR) distribution. Some statistical properties of suggested distribution in particular, moments, mode, quantiles, order statistics, entropy, inequality measures and stress-strength parameter have been investigated extensively. To estimate the parameters, maximum likelihood estimation (MLE) is discussed. The model superiority is verified through two real datasets.

Article Details

References

  1. R.C. Gupta, P.L. Gupta, R.D. Gupta, Modeling Failure Time Data by Lehman Alternatives, Commun. Stat. - Theory Methods. 27 (1998), 887-904. https://doi.org/10.1080/03610929808832134.
  2. R.D. Gupta, D. Kundu, Exponentiated Exponential Family: An Alternative to Gamma and Weibull Distributions, Biom. J. 43 (2001), 117-130. https://doi.org/10.1002/1521-4036(200102)43:13.0.co;2-r.
  3. P. Seenoi, T. Supapakorn, W. Bodhisuwan, The Length-Biased Exponentiated Inverted Weibull Distribution, Int. J. Pure Appl. Math. 92 (2014), 191-206. https://doi.org/10.12732/ijpam.v92i2.5.
  4. M. Ali, A. Khalil, M. Ijaz, N. Saeed, Alpha-Power Exponentiated Inverse Rayleigh Distribution and Its Applications to Real and Simulated Data, PLoS ONE. 16 (2021), e0245253. https://doi.org/10.1371/journal.pone.0245253.
  5. A. Mustafa, M.I. Khan, the Length-Biased Powered Inverse Rayleigh Distribution With Applications, J. Appl. Math. Inform. 40 (2022), 1-13. https://doi.org/10.14317/JAMI.2022.001.
  6. D. Kumar, U. Singh, S.K. Singh, A Method of Proposing New Distribution and Its Application to Bladder Cancer Patients Data, J. Stat. Appl. Probab. Lett. 2 (2015), 235-245.
  7. D. Kumar, U. Singh, S.K. Singh, A New Distribution Using Sine Function- Its Application to Bladder Cancer Patients Data, J. Stat. Appl. Probab. 4 (2015), 417-427.
  8. D. Kumar, U. Singh, S.K. Singh, Lifetime Distributions: Derived From Some Minimum Guarantee Distribution, Sohag J. Math. 4 (2016), 7-11. https://doi.org/10.18576/sjm/040102.
  9. V.N. Trayer, Inverse Rayleigh (IR) Model, in: Proceedings of the Academy of Science, Doklady Akad, Nauk Belarus, U.S.S.R, 1964.
  10. V.G.H. Voda, On the Inverse Rayleigh Distributed Random Variable, Rep. Stat. Appl. Res. 19 (1972), 13-21.
  11. N.J.M. Anber, Estimation of Two Parameter Powered Inverse Rayleigh Distribution, Pak. J. Stat. 36 (2020), 117-133.
  12. M.I. Khan, Dual Generalized Order Statistics With Moments Properties Using Powered Inverse Rayleigh Distribution, J. Stat. Manage. Syst. 25 (2022), 2087-2099. https://doi.org/10.1080/09720510.2022.2060615.
  13. J.J.A. Moors, A Quantile Alternative for Kurtosis, The Statistician. 37 (1988), 25-32. https://doi.org/10.2307/2348376.
  14. M.O. Lorenz, Methods of Measuring the Concentration of Wealth, Publ. Amer. Stat. Assoc. 9 (1905), 209-219. https://doi.org/10.1080/15225437.1905.10503443.
  15. C. Bonferroni, Elementi di Statistica Generale, Seeber, Firenze, 1930.
  16. J.F. Lawless, Statistical Models and Methods for Lifetime Data, 2nd Edition, Wiley, Canada, 2003.
  17. H. Akaike, A New Look at the Statistical Model Identification, IEEE Trans. Automat. Control. 19 (1974), 716-723. https://doi.org/10.1109/tac.1974.1100705.
  18. C.M. Hurvich, C.L. Tsai, Regression and Time Series Model Selection in Small Samples, Biometrika. 76 (1989), 297-307. https://doi.org/10.1093/biomet/76.2.297.
  19. G. Schwarz, Estimating the Dimension of a Model, Ann. Stat. 6 (1978), 461-464. https://www.jstor.org/stable/2958889.
  20. D. Hinkley, On Quick Choice of Power Transformation, Appl. Stat. 26 (1977), 67-69. https://doi.org/10.2307/2346869.
  21. T. Bjerkedal, Acquisition of Resistance in Guinea Pigs Infected With Different Doses of Virulent Tubercle Bacilli, Amer. J. Epidemiol. 72 (1960), 130-148. https://doi.org/10.1093/oxfordjournals.aje.a120129.