Powered Inverse Rayleigh Distribution Using DUS Transformation
Main Article Content
Abstract
This article reports an extension of powered inverse Rayleigh distribution via DUS transformation, named DUS-Powered Inverse Rayleigh (DUS-PIR) distribution. Some statistical properties of suggested distribution in particular, moments, mode, quantiles, order statistics, entropy, inequality measures and stress-strength parameter have been investigated extensively. To estimate the parameters, maximum likelihood estimation (MLE) is discussed. The model superiority is verified through two real datasets.
Article Details
References
- R.C. Gupta, P.L. Gupta, R.D. Gupta, Modeling Failure Time Data by Lehman Alternatives, Commun. Stat. - Theory Methods. 27 (1998), 887-904. https://doi.org/10.1080/03610929808832134.
- R.D. Gupta, D. Kundu, Exponentiated Exponential Family: An Alternative to Gamma and Weibull Distributions, Biom. J. 43 (2001), 117-130. https://doi.org/10.1002/1521-4036(200102)43:13.0.co;2-r.
- P. Seenoi, T. Supapakorn, W. Bodhisuwan, The Length-Biased Exponentiated Inverted Weibull Distribution, Int. J. Pure Appl. Math. 92 (2014), 191-206. https://doi.org/10.12732/ijpam.v92i2.5.
- M. Ali, A. Khalil, M. Ijaz, N. Saeed, Alpha-Power Exponentiated Inverse Rayleigh Distribution and Its Applications to Real and Simulated Data, PLoS ONE. 16 (2021), e0245253. https://doi.org/10.1371/journal.pone.0245253.
- A. Mustafa, M.I. Khan, the Length-Biased Powered Inverse Rayleigh Distribution With Applications, J. Appl. Math. Inform. 40 (2022), 1-13. https://doi.org/10.14317/JAMI.2022.001.
- D. Kumar, U. Singh, S.K. Singh, A Method of Proposing New Distribution and Its Application to Bladder Cancer Patients Data, J. Stat. Appl. Probab. Lett. 2 (2015), 235-245.
- D. Kumar, U. Singh, S.K. Singh, A New Distribution Using Sine Function- Its Application to Bladder Cancer Patients Data, J. Stat. Appl. Probab. 4 (2015), 417-427.
- D. Kumar, U. Singh, S.K. Singh, Lifetime Distributions: Derived From Some Minimum Guarantee Distribution, Sohag J. Math. 4 (2016), 7-11. https://doi.org/10.18576/sjm/040102.
- V.N. Trayer, Inverse Rayleigh (IR) Model, in: Proceedings of the Academy of Science, Doklady Akad, Nauk Belarus, U.S.S.R, 1964.
- V.G.H. Voda, On the Inverse Rayleigh Distributed Random Variable, Rep. Stat. Appl. Res. 19 (1972), 13-21.
- N.J.M. Anber, Estimation of Two Parameter Powered Inverse Rayleigh Distribution, Pak. J. Stat. 36 (2020), 117-133.
- M.I. Khan, Dual Generalized Order Statistics With Moments Properties Using Powered Inverse Rayleigh Distribution, J. Stat. Manage. Syst. 25 (2022), 2087-2099. https://doi.org/10.1080/09720510.2022.2060615.
- J.J.A. Moors, A Quantile Alternative for Kurtosis, The Statistician. 37 (1988), 25-32. https://doi.org/10.2307/2348376.
- M.O. Lorenz, Methods of Measuring the Concentration of Wealth, Publ. Amer. Stat. Assoc. 9 (1905), 209-219. https://doi.org/10.1080/15225437.1905.10503443.
- C. Bonferroni, Elementi di Statistica Generale, Seeber, Firenze, 1930.
- J.F. Lawless, Statistical Models and Methods for Lifetime Data, 2nd Edition, Wiley, Canada, 2003.
- H. Akaike, A New Look at the Statistical Model Identification, IEEE Trans. Automat. Control. 19 (1974), 716-723. https://doi.org/10.1109/tac.1974.1100705.
- C.M. Hurvich, C.L. Tsai, Regression and Time Series Model Selection in Small Samples, Biometrika. 76 (1989), 297-307. https://doi.org/10.1093/biomet/76.2.297.
- G. Schwarz, Estimating the Dimension of a Model, Ann. Stat. 6 (1978), 461-464. https://www.jstor.org/stable/2958889.
- D. Hinkley, On Quick Choice of Power Transformation, Appl. Stat. 26 (1977), 67-69. https://doi.org/10.2307/2346869.
- T. Bjerkedal, Acquisition of Resistance in Guinea Pigs Infected With Different Doses of Virulent Tubercle Bacilli, Amer. J. Epidemiol. 72 (1960), 130-148. https://doi.org/10.1093/oxfordjournals.aje.a120129.