Order of Approximation by a New Univariate Kantorovich Type Operator

Main Article Content

Asha Ram Gairola, Nidhi Bisht, Laxmi Rathour, Lakshmi Narayan Mishra, Vishnu Narayan Mishra


In order to approximate Lebesgue integrable functions on [0, 1], a sequence of linear positive integral operators of Kantorovich type Lσ<sσ>f (x) with a parameter sσ is introduced. The estimates for rates of approximation for functions with a specific smoothness are proved using the appropriate modulus of continuity.

Article Details


  1. A.R. Gairola, A. Singh, L. Rathour, V.N. Mishra, Improved Rate of Approximation by Modification of Baskakov Operator, Oper. Matrices. 4 (2022), 1097-1123. https://doi.org/10.7153/oam-2022-16-72.
  2. A.R. Gairola, S. Maindola, L. Rathour, L.N. Mishra, V.N. Mishra, Better Uniform Approximation by New Bivariate Bernstein Operators, Int. J. Anal. Appl. 20 (2022), 60. https://doi.org/10.28924/2291-8639-20-2022-60.
  3. M. Dhamija, N. Deo, Better Approximation Results by Bernstein-Kantorovich Operators, Lobachevskii J. Math. 38 (2017), 94-100. https://doi.org/10.1134/s1995080217010085.
  4. Z. Finta, Remark on Voronovskaja Theorem for q−Bernstein Operators, Stud. Univ. Babes-Bolyai Math. 56 (2011), 335-339.
  5. S.G. Gal, Uniform and Pointwise Quantitative Approximation by Kantorovich?Choquet Type Integral Operators with Respect to Monotone and Submodular Set Functions, Mediterr. J. Math. 14 (2017), 205. https://doi.org/10.1007/s00009-017-1007-6.
  6. R.B. Gandhi, Deepmala, V.N. Mishra, Local and Global Results for Modified Szász–Mirakjan Operators, Math. Methods Appl. Sci. 40 (2017), 2491-2504. https://doi.org/10.1002/mma.4171.
  7. V. Gupta, Bernstein Durrmeyer Operators Based on Two Parameters, Facta Univ. Ser. Math. Inform. 31 (2016), 79-95.
  8. V. Gupta, D. Soyba?, G. Tachev, Improved Approximation on Durrmeyer-Type Operators, Bol. Soc. Mat. Mex. 25 (2018), 363-373. https://doi.org/10.1007/s40590-018-0196-8.
  9. V. Gupta, G. Tachev, A.M. Acu, Modified Kantorovich Operators With Better Approximation Properties, Numer. Algorithms. 81 (2018), 125-149. https://doi.org/10.1007/s11075-018-0538-7.
  10. L.V. Kantorovich, Sur Certains Developpements Suivant les Polynomes de la Forme de S. Bernstein I, II. C. R. Acad. URSS. (1930), 563-568, 595-600.
  11. H. Khosravian-Arab, M. Dehghan, M.R. Eslahchi, A New Approach to Improve the Order of Approximation of the Bernstein Operators: Theory and Applications, Numer Algorithms. 77 (2017), 111-150. https://doi.org/10.1007/s11075-017-0307-z.
  12. G. Lorentz, Zur Theorie der Polynome von S. Bernstein, Rec. Math. [Mat. Sbornik] N.S., 2 (1937), 543-556.
  13. V.N. Mishra, K. Khatri, L.N. Mishra, Deepmala, Inverse Result in Simultaneous Approximation by Baskakov-Durrmeyer-Stancu Operators, J. Inequal. Appl. 2013 (2013), 586. https://doi.org/10.1186/1029-242x-2013-586.
  14. L.N. Mishra, A. Srivastava, T. Khan, S.A. Khan, V.N. Mishra, Inverse Theorems for Some Linear Positive Operators Using Beta and Baskakov Basis Functions, AIP Conf. Proc. 2364 (2021), 020028. https://doi.org/10.1063/5.0062925.
  15. E. Voronovskaja, Détermination de la Forme Asymptotique d’Approximation des Fonctions par les Polynômes de M. Bernstein, Dokl. Akad. Nauk SSSR 4 (1932), 86-92.
  16. J. Bustamante, Bernstein Operators and Their Properties, Springer, Cham, 2017. https://doi.org/10.1007/978-3-319-55402-0.
  17. Z. Ditzian, V. Totik, Moduli of Smoothness, Springer, New York, 1987. https://doi.org/10.1007/978-1-4612-4778-4.
  18. V. Gupta, M.Th. Rassias, Moments of Linear Positive Operators and Approximation, Springer, Cham, 2019. https://doi.org/10.1007/978-3-030-19455-0.
  19. V. Gupta, G. Tachev, Approximation with Positive Linear Operators and Linear Combinations, Springer, Cham, 2017. https://doi.org/10.1007/978-3-319-58795-0.
  20. V. Gupta, G. Tachev, Direct Estimates for Some New Operators, in: Approximation with Positive Linear Operators and Linear Combinations, Springer, Cham, 2017: pp. 117-155. https://doi.org/10.1007/978-3-319-58795-0_7.
  21. P.P. Korovkin, Linear Operators and Approximation Theory, Hindustan Publishing Corporation, 1960.
  22. G. Lorentz, Approximation of Functions, Athena Series, Holt, Rinehart and Winston, New York, 1966.
  23. M.A. Özarslan, O. Duman, Smoothness Properties of Modified Bernstein-Kantorovich Operators, Numer. Funct. Anal. Optim. 37 (2015), 92-105. https://doi.org/10.1080/01630563.2015.1079219.