Order of Approximation by a New Univariate Kantorovich Type Operator
Main Article Content
Abstract
In order to approximate Lebesgue integrable functions on [0, 1], a sequence of linear positive integral operators of Kantorovich type Lσ<sσ>f (x) with a parameter sσ is introduced. The estimates for rates of approximation for functions with a specific smoothness are proved using the appropriate modulus of continuity.
Article Details
References
- A.R. Gairola, A. Singh, L. Rathour, V.N. Mishra, Improved Rate of Approximation by Modification of Baskakov Operator, Oper. Matrices. 4 (2022), 1097-1123. https://doi.org/10.7153/oam-2022-16-72.
- A.R. Gairola, S. Maindola, L. Rathour, L.N. Mishra, V.N. Mishra, Better Uniform Approximation by New Bivariate Bernstein Operators, Int. J. Anal. Appl. 20 (2022), 60. https://doi.org/10.28924/2291-8639-20-2022-60.
- M. Dhamija, N. Deo, Better Approximation Results by Bernstein-Kantorovich Operators, Lobachevskii J. Math. 38 (2017), 94-100. https://doi.org/10.1134/s1995080217010085.
- Z. Finta, Remark on Voronovskaja Theorem for q−Bernstein Operators, Stud. Univ. Babes-Bolyai Math. 56 (2011), 335-339.
- S.G. Gal, Uniform and Pointwise Quantitative Approximation by Kantorovich?Choquet Type Integral Operators with Respect to Monotone and Submodular Set Functions, Mediterr. J. Math. 14 (2017), 205. https://doi.org/10.1007/s00009-017-1007-6.
- R.B. Gandhi, Deepmala, V.N. Mishra, Local and Global Results for Modified Szász–Mirakjan Operators, Math. Methods Appl. Sci. 40 (2017), 2491-2504. https://doi.org/10.1002/mma.4171.
- V. Gupta, Bernstein Durrmeyer Operators Based on Two Parameters, Facta Univ. Ser. Math. Inform. 31 (2016), 79-95.
- V. Gupta, D. Soyba?, G. Tachev, Improved Approximation on Durrmeyer-Type Operators, Bol. Soc. Mat. Mex. 25 (2018), 363-373. https://doi.org/10.1007/s40590-018-0196-8.
- V. Gupta, G. Tachev, A.M. Acu, Modified Kantorovich Operators With Better Approximation Properties, Numer. Algorithms. 81 (2018), 125-149. https://doi.org/10.1007/s11075-018-0538-7.
- L.V. Kantorovich, Sur Certains Developpements Suivant les Polynomes de la Forme de S. Bernstein I, II. C. R. Acad. URSS. (1930), 563-568, 595-600.
- H. Khosravian-Arab, M. Dehghan, M.R. Eslahchi, A New Approach to Improve the Order of Approximation of the Bernstein Operators: Theory and Applications, Numer Algorithms. 77 (2017), 111-150. https://doi.org/10.1007/s11075-017-0307-z.
- G. Lorentz, Zur Theorie der Polynome von S. Bernstein, Rec. Math. [Mat. Sbornik] N.S., 2 (1937), 543-556.
- V.N. Mishra, K. Khatri, L.N. Mishra, Deepmala, Inverse Result in Simultaneous Approximation by Baskakov-Durrmeyer-Stancu Operators, J. Inequal. Appl. 2013 (2013), 586. https://doi.org/10.1186/1029-242x-2013-586.
- L.N. Mishra, A. Srivastava, T. Khan, S.A. Khan, V.N. Mishra, Inverse Theorems for Some Linear Positive Operators Using Beta and Baskakov Basis Functions, AIP Conf. Proc. 2364 (2021), 020028. https://doi.org/10.1063/5.0062925.
- E. Voronovskaja, Détermination de la Forme Asymptotique d’Approximation des Fonctions par les Polynômes de M. Bernstein, Dokl. Akad. Nauk SSSR 4 (1932), 86-92.
- J. Bustamante, Bernstein Operators and Their Properties, Springer, Cham, 2017. https://doi.org/10.1007/978-3-319-55402-0.
- Z. Ditzian, V. Totik, Moduli of Smoothness, Springer, New York, 1987. https://doi.org/10.1007/978-1-4612-4778-4.
- V. Gupta, M.Th. Rassias, Moments of Linear Positive Operators and Approximation, Springer, Cham, 2019. https://doi.org/10.1007/978-3-030-19455-0.
- V. Gupta, G. Tachev, Approximation with Positive Linear Operators and Linear Combinations, Springer, Cham, 2017. https://doi.org/10.1007/978-3-319-58795-0.
- V. Gupta, G. Tachev, Direct Estimates for Some New Operators, in: Approximation with Positive Linear Operators and Linear Combinations, Springer, Cham, 2017: pp. 117-155. https://doi.org/10.1007/978-3-319-58795-0_7.
- P.P. Korovkin, Linear Operators and Approximation Theory, Hindustan Publishing Corporation, 1960.
- G. Lorentz, Approximation of Functions, Athena Series, Holt, Rinehart and Winston, New York, 1966.
- M.A. Özarslan, O. Duman, Smoothness Properties of Modified Bernstein-Kantorovich Operators, Numer. Funct. Anal. Optim. 37 (2015), 92-105. https://doi.org/10.1080/01630563.2015.1079219.