Generalization of Homotopy Analysis Method for q-Fractional Non-linear Differential Equations

Main Article Content

B. Madhavi, G. Suresh Kumar, S. Nagalakshmi, T. S. Rao

Abstract

This paper presents a generalization of the Homotopy analysis method (HAM) for finding the solutions of nonlinear q-fractional differential equations (q-FDEs). This method shows that the series solution in the case of generalized HAM is more likely to converge than that on HAM. In order that it is applicable to solve immensely non-linear problems and also address a few issues, such as the impact of varying the auxiliary parameter, auxiliary function, and auxiliary linear operator on the order of convergence of the method. The generalized HAM method is more accurate than the HAM.

Article Details

References

  1. R.P. Agarwal, Certain fractional q-integrals and q-derivatives, Math. Proc. Camb. Phil. Soc. 66 (1969), 365-370. https://doi.org/10.1017/s0305004100045060.
  2. M.H. Annaby, Z.S. Mansour, q-Fractional calculus and equations, Springer Heidelberg, New York, 2012.
  3. A.S. Bataineh, M.S.M. Noorani, I. Hashim, Direct solution of nth-order IVPs by homotopy analysis method, Differ. Equ. Nonlinear Mech. 2009 (2009), 842094. https://doi.org/10.1155/2009/842094.
  4. T. Ernst, q-Taylor formulas with q-integral reminder, (2018). http://solnaschack.org/ernst/ErnstTaypre.pdf.
  5. I. Hashim, O. Abdulaziz, S. Momani, Homotopy analysis method for fractional IVPs, Commun. Nonlinear Sci. Numer. Simul. 14 (2009), 674-684. https://doi.org/10.1016/j.cnsns.2007.09.014.
  6. J.H. He, Homotopy perturbation technique, Computer Methods Appl. Mech. Eng. 178 (1999), 257-262. https://doi.org/10.1016/s0045-7825(99)00018-3.
  7. H. Jafari, S.J. Johnston, S.M. Sani, et al. A decomposition method for solving q-difference equations, Appl. Math. Inform. Sci. 9 (2015), 2917-2920.
  8. F.H. Jackson, XI.-On q-functions and a certain difference operator, Trans. R. Soc. Edinb. 46 (1909), 253-281. https://doi.org/10.1017/s0080456800002751.
  9. F.H. Jackson, On q-definite integrals, Quart. J. Pure Appl. Math. 41 (1910), 193-203.
  10. V. Kac, P. Cheung, Quantum calculus, New York, Springer-Verlag, 2001.
  11. A.A. Kilbas, H.M. Srivastava, J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, Elsevier, Amsterdam, 2006.
  12. S.J. Liao, The proposed homotopy analysis method for the solution of nonlinear problems, Ph.D. Dissertation, Shanghai Jiao Tong University, 1992.
  13. S.J. Liao, Beyond perturbation: introduction to homotopy analysis method, Chapman & Hall/CRC Press, Boca Raton (2003).
  14. S.J. Liao, On the homotopy analysis method for nonlinear problems, Appl. Math. Comput. 147 (2004), 499-513. https://doi.org/10.1016/s0096-3003(02)00790-7.
  15. S.J. Liao, Notes on the homotopy analysis method: Some definitions and theorems, Commun. Nonlinear Sci. Numer. Simul. 14 (2009), 983-997. https://doi.org/10.1016/j.cnsns.2008.04.013.
  16. H.K. Liu, Application of a differential transformation method to strongly nonlinear damped q-difference equations, Computers Math. Appl. 61 (2011), 2555-2561. https://doi.org/10.1016/j.camwa.2011.02.048.
  17. B. Madhavi, A numerical scheme for the solution of q-fractional differential equation using q-Laguerre operational matrix, Adv. Math., Sci. J. 10 (2020), 145-154. https://doi.org/10.37418/amsj.10.1.15.
  18. K. Miller, B. Ross, An introduction to the fractional calculus and fractional differential equations, John Wiley and Sons, New York, 1993.
  19. M.S. Semary, H.N. Hassan, The homotopy analysis method for q-difference equations, Ain Shams Eng. J. 9 (2018), 415-421. https://doi.org/10.1016/j.asej.2016.02.005.
  20. K. Oldham, J. Spanier, The fractional Calculus, Academic Press, New York, 1974.
  21. P. Lyu, S. Vong, An efficient numerical method for q-fractional differential equations, Appl. Math. Lett. 103 (2020), 106156. https://doi.org/10.1016/j.aml.2019.106156.
  22. I. Podlubny, Fractional differential equations, Academic Press, San Diego, 1999.
  23. P.M. Rajkovic, S.D. Marinkovic, M.S. Stankovic, Fractional integrals and derivatives in q-calculus, Appl. Anal. Discrete Math. 1 (2007), 311-323. https://www.jstor.org/stable/43666058.
  24. A. Saadatmandi, M. Dehghan, A new operational matrix for solving fractional-order differential equations, Computers Math. Appl. 59 (2010), 1326-1336. https://doi.org/10.1016/j.camwa.2009.07.006.
  25. S. Salahshour, A. Ahmadian, C.S. Chan, Successive approximation method for Caputo q-fractional IVPs, Commun. Nonlinear Sci. Numer. Simul. 24 (2015), 153-158. https://doi.org/10.1016/j.cnsns.2014.12.014.
  26. W.A. Al-Salam, A. Verma, A fractional Leibniz q-formula, Pac. J. Math. 60 (1975), 1-9.
  27. M.S. Semary, H.N. Hassan, The homotopy analysis method for strongly nonlinear initial/boundary value problems, Int. J. Modern Math. Sci. 9 (2014), 154-172.
  28. M. El-Shahed, M. Gaber, Two-dimensional q-differential transformation and its application, Appl. Math. Comput. 217 (2011), 9165-9172. https://doi.org/10.1016/j.amc.2011.03.152.
  29. M.A. El-Tawil, S.N. Huseen, The q-homotopy analysis method (q-HAM), Int. J. Appl. Math. Mech. 8 (2012), 51-75.
  30. G.C. Wu, D. Baleanu, New applications of the variational iteration method - from differential equations to qfractional difference equations, Adv. Differ. Equ. 2013 (2013), 21. https://doi.org/10.1186/1687-1847-2013-21.
  31. Y. Sheng, T. Zhang, Some results on the q-calculus and fractional q-differential equations, Mathematics. 10 (2021), 64. https://doi.org/10.3390/math10010064.
  32. J.K. Zhou, Differential transformation and its application for electrical circuits, Huazhong University Press, Wuhan, China, (1986) (in Chinese).
  33. M. Zurigat, S. Momani, Z. Odibat, et al. The homotopy analysis method for handling systems of fractional differential equations, Appl. Math. Model. 34 (2010), 24-35. https://doi.org/10.1016/j.apm.2009.03.024.