The Study of Coordinate-Wise Decomposition Descent Method for Optimization Problems
Main Article Content
Abstract
The aim of this paper is to consider a general non-stationary optimization problem whose objective function need not be smooth in general and only approximation sequences are known instead of exact values of the functions. We apply a two-step technique where approximate solutions of a sequence of a generalized mixed variational inequality problem (GMVIP) are inserted in the iterative method of a selective coordinate-wise decomposition descent method. Its convergence is achieved under coercivity-type assumptions.
Article Details
References
- G. Stampacchia, Variational Inequalities, in: Proc. NATO Advanced Study Inst., Theory and Application of Monotone Operators, Venice, 1968, pp. 101–192.
- M. Sofonea, W. Han, S. Migórski, Numerical Analysis of History-Dependent Variational–hemivariational Inequalities With Applications to Contact Problems, Eur. J. Appl. Math. 26 (2015), 427–452. https://doi.org/10.1017/s095679251500011x.
- M. Hintermüller, Inverse Coefficient Problems for Variational Inequalities: Optimality Conditions and Numerical Realization, ESAIM: M2AN. 35 (2001), 129–152. https://doi.org/10.1051/m2an:2001109.
- Salahuddin, A Coordinate Wise Variational Method with Tolerance Functions, J. Appl. Nonlinear Dyn. 9 (2020), 541–549. https://doi.org/10.5890/jand.2020.12.002.
- I.V. Konnov, Right-Hand Side Decomposition for Variational Inequalities, J. Optim. Theory Appl. 160 (2013), 221–238. https://doi.org/10.1007/s10957-013-0370-0.
- V. Cevher, S. Becker, M. Schmidt, Convex Optimization for Big Data: Scalable, Randomized, and Parallel Algorithms for Big Data Analytics, IEEE Signal Process. Mag. 31 (2014), 32–43. https://doi.org/10.1109/msp.2014.2329397.
- F. Facchinei, G. Scutari, S. Sagratella, Parallel Selective Algorithms for Nonconvex Big Data Optimization, IEEE Trans. Signal Process. 63 (2015), 1874–1889. https://doi.org/10.1109/tsp.2015.2399858.
- I. Konnov, Decomposition Descent Method for Limit Optimization Problems, in: R. Battiti, D.E. Kvasov, Y.D. Sergeyev (Eds.), Learning and Intelligent Optimization, Springer International Publishing, Cham, 2017: pp. 166–179. https://doi.org/10.1007/978-3-319-69404-7_12.
- I.V. Konnov, Selective Bi-coordinate Method for Limit Non-Smooth Resource Allocation Type Problems, Set-Valued Var. Anal. 27 (2017), 191–211. https://doi.org/10.1007/s11228-017-0447-2.
- P. Tseng, S. Yun, A Coordinate Gradient Descent Method for Nonsmooth Separable Minimization, Math. Program. 117 (2009), 387–423. https://doi.org/10.1007/s10107-007-0170-0.
- I.V. Konnov, Salahuddin, Two-Level Iterative Method for Non-Stationary Mixed Variational Inequalities, Russian Math. 61 (2017), 44–53. https://doi.org/10.3103/s1066369x17100061.
- Salahuddin, Iterative Method for Non-Stationary Mixed Variational Inequalities, Discontin. Nonlinear. Complex. 9 (2020), 647–655. https://doi.org/10.5890/dnc.2020.12.015.
- G. Salmon, V.H. Nguyen, J.J. Strodiot, Coupling the Auxiliary Problem Principle and Epiconvergence Theory to Solve General Variational Inequalities, J. Optim. Theory Appl. 104 (2000), 629–657. https://doi.org/10.1023/a:1004693710334.
- F.H. Clarke, Optimization and Nonsmooth Analysis, Wiley, New York, 1983.
- I.V. Konnov, Sequential Threshold Control in Descent Splitting Methods for Decomposable Optimization Problems, Optim. Meth. Softw. 30 (2015), 1238–1254. https://doi.org/10.1080/10556788.2015.1030015.
- Y.M. Ermoliev, V.I. Norkin, R.J.-B. Wets, The Minimization of Semicontinuous Functions: Mollifier Subgradients, SIAM J. Control Optim. 33 (1995), 149–167. https://doi.org/10.1137/s0363012992238369.
- M.O. Czarnecki, L. Rifford, Approximation and Regularization of Lipschitz Functions: Convergence of the Gradients, Trans. Amer. Math. Soc. 358 (2006), 4467–4520.
- H.W. Engl, M. Hanke, A. Neubauer, Regularization of Inverse Problems, Kluwer Academic Publishers, Dordrecht, 1996.
- R. Tibshirani, Regression Shrinkage and Selection Via the Lasso, J. R. Stat. Soc.: Ser. B (Methodol.) 58 (1996), 267–288. https://doi.org/10.1111/j.2517-6161.1996.tb02080.x.