Best Proximity Point and Existence of the Positive Definite Solution for Matrix Equations
Main Article Content
Abstract
In this research, α − ψ − θ contraction has been defined to find the best proximity point in partially ordered metric spaces. Proper support for the result has been given in the form of a suitable example. The third part is fully devoted to the positive definite solution of matrix equations.
Article Details
References
- A. Abkar, M. Gabeleh, Best Proximity Points for Cyclic Mappings in Ordered Metric Spaces, J. Optim. Theory Appl. 150 (2011), 188-193. https://doi.org/10.1007/s10957-011-9810-x.
- A. Abkar, M. Gabeleh, Generalized Cyclic Contractions in Partially Ordered Metric Spaces, Optim. Lett. 6 (2011), 1819-1830. https://doi.org/10.1007/s11590-011-0379-y.
- A. Abkar, M. Gabeleh, The Existence of Best Proximity Points for Multivalued Non-Self-Mappings, Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat., RACSAM. 107 (2012), 319-325. https://doi.org/10.1007/s13398-012-0074-6.
- J. Ahmad, A.E. Al-Mazrooei, Y.J. Cho, et al. Fixed Point Results for Generalized Theta-Contractions, J. Nonlinear Sci. Appl. 10 (2017), 2350-2358. https://doi.org/10.22436/jnsa.010.05.07.
- S. Sadiq Basha, Extensions of Banach’s Contraction Principle, Numer. Funct. Anal. Optim. 31 (2010), 569–576. https://doi.org/10.1080/01630563.2010.485713.
- S.S. Basha, Discrete Optimization in Partially Ordered Sets, J. Glob. Optim. 54 (2011), 511-517. https://doi.org/10.1007/s10898-011-9774-2.
- M. Jleli, B. Samet, Best Proximity Point for α − ψ Contractive Type Mapping and Applications, Bull. Sci. Math. 137 (2013), 977-995.
- M. Jleli, B. Samet, A New Generalization of the Banach Contraction Principle, J Inequal Appl. 2014 (2014), 38. https://doi.org/10.1186/1029-242x-2014-38.
- V. Pragadeeswarar, M. Marudai, Best Proximity Points: Approximation and Optimization in Partially Ordered Metric Spaces, Optim. Lett. 7 (2012), 1883-1892. https://doi.org/10.1007/s11590-012-0529-x.
- V. Pragadeeswarar, M. Marudai, Best Proximity Points for Generalized Proximal Weak Contractions in Partially Ordered Metric Spaces, Optim. Lett. 9 (2013), 105-118. https://doi.org/10.1007/s11590-013-0709-3.
- H. Piri, S. Rahrovi, H. Marasi, et al. A Fixed Point Theorem for F-Khan-Contractions on Complete Metric Spaces and Application to Integral Equations, J. Nonlinear Sci. Appl. 10 (2017), 4564-4573. https://doi.org/10.22436/jnsa.010.09.02.
- A.C.M. Ran, M.C.B. Reurings, A Fixed Point Theorem in Partially Ordered Sets and Some Applications to Matrix Equations, Proc. Amer. Math. Soc. 132 (2003), 1435–1443.
- B. Samet, C. Vetro, P. Vetro, Fixed Point Theorem for α − ψ Contractive Mapping, Nonlinear Anal.: Theory Methods Appl. 75 (2012), 2154-2165. https://doi.org/10.1016/j.na.2011.10.014.
- J. Zhang, Y. Su, Q. Cheng, A note on ’A best proximity point theorem for Geraghty-contractions’, Fixed Point Theory Appl. 2013 (2013), 99. https://doi.org/10.1186/1687-1812-2013-99.