Strong and ∆-Convergence of a New Iteration for Common Fixed Points of Two Asymptotically Nonexpansive Mappings
Main Article Content
Abstract
The purpose of this paper is to study strong and ∆ - convergence of a newly defined iteration to a common fixed point of two asymptotically nonexpansive self mappings in a hyperbolic space framework. We provide an example and a comparison table to support our assertions.
Article Details
References
- K. Goebel, W. Kirk, A Fixed Point Theorem for Asymptotically Nonexpansive Mappings, Proc. Amer. Math. Soc. 35 (1972), 171-174.
- D.R. Sahu, D. O’Regan, R.P. Agarwal, Fixed Point Theory for Lipschitzian-Type Mappings with Applications, Springer, New York, 2009. https://doi.org/10.1007/978-0-387-75818-3.
- M.O. Osilike, S.C. Aniagbosor, Weak and Strong Convergence Theorems for Fixed Points of Asymptotically Nonexpensive Mappings, Math. Computer Model. 32 (2000), 1181-1191. https://doi.org/10.1016/s0895-7177(00)00199-0.
- J. Schu, Iterative Construction of Fixed Points of Asymptotically Nonexpansive Mappings, J. Math. Anal. Appl. 158 (1991), 407-413. https://doi.org/10.1016/0022-247x(91)90245-u.
- K.K. Tan, H.K. Xu, Approximating Fixed Points of Nonexpansive Mappings by the Ishikawa Iteration Process, J. Math. Anal. Appl. 178 (1993), 301-308. https://doi.org/10.1006/jmaa.1993.1309.
- W.R. Mann, Mean Value Methods in Iteration, Proc. Amer. Math. Soc. 4 (1953), 506-510.
- S. Ishikawa, Fixed Points by a New Iteration Method, Proc. Amer. Math. Soc. 44 (1974), 147-150.
- K.K. Tan, H.K. Xu, Fixed Point Iteration Processes for Asymptotically Nonexpansive Mappings, Proc. Amer. Math. Soc. 122 (1994), 733-739.
- R. Agarwal, D.O. Regan, D. Sahu, Iterative Construction of Fixed Points of Nearly Asymptotically Nonexpansive Mappings, J. Nonlinear Convex Anal. 8 (2007), 61-79.
- M. Abbas, B.S. Thakur, D. Thakur, Fixed Points of Asymptotically Nonexpansive Mappings in the Intermediate Sense in CAT(0) Spaces, Commun. Korean Math. Soc. 28 (2013), 107-121. https://doi.org/10.4134/CKMS.2013.28.1.107.
- S. Chang, L. Wang, H. J. Lee, C. K. Chan, and L. Yang, Demiclosed Principle and δ-Convergence Theorems for Total Asymptotically Nonexpansive Mappings in CAT(0) Spaces, Appl. Math. Comput. 219 (2012), 2611-2617. https://doi.org/10.1016/j.amc.2012.08.095.
- S. Dhompongsa, B. Panyanak, On δ-Convergence Theorems in CAT(0) Spaces, Computers Math. Appl. 56 (2008), 2572-2579. https://doi.org/10.1016/j.camwa.2008.05.036.
- S.H. Khan, M. Abbas, Strong and ∆-Convergence of Some Iterative Schemes in CAT(0) Spaces, Computers Math. Appl. 61 (2011), 109-116. https://doi.org/10.1016/j.camwa.2010.10.037.
- K. Goebel, Iteration Processes for Nonexpansive Mappings. In: S.P. Singh, S. Thomeier, (eds.) Topological Methods in Nonlinear Functional Analysis, Contemporary Mathematics, vol. 21, pp. 115–123. American Math. Soc, Providence, 1983.
- W.A. Kirk, Krasnoselskii’s Iteration Process in Hyperbolic Space, Numer. Funct. Anal. Optim. 4 (1982), 371-381. https://doi.org/10.1080/01630568208816123.
- S. Reich, I. Shafrir, Nonexpansive Iterations in Hyperbolic Spaces, Nonlinear Anal.: Theory Meth. Appl. 15 (1990), 537-558. https://doi.org/10.1016/0362-546x(90)90058-o.
- U. Kohlenbach, Some Logical Metatheorems With Applications in Functional Analysis, Trans. Amer. Math. Soc. 357 (2005), 89-128.
- A. Şahin, M. Başarır, On the Strong Convergence of a Modified S-Iteration Process for Asymptotically QuasiNonexpansive Mappings in a CAT(0) Space, Fixed Point Theory Appl. 2013 (2013), 12. https://doi.org/10.1186/1687-1812-2013-12.
- G. Das, Fixed Points of Quasinonexpansive Mappings, Indian J. Pure Appl. Math. 17 (1986), 1263-1269.
- S. H. Khan and W. Takahashi, Approximating Common Fixed Points of Two Asymptotically Nonexpansive Mappings, Sci. Math. Japon. 53 (2001), 143-148.
- W. Takahashi, T. Tamura, Limit Theorems of Operators by Convex Combinations of Nonexpansive Retractions in Banach Spaces, J. Approx. Theory. 91 (1997), 386-397. https://doi.org/10.1006/jath.1996.3093.
- G.S. Saluja, Convergence of Modified S-Iteration Process for Two Asymptotically Quasi-Nonexpansive Type Mappings in CAT(0) Spaces, Demonstr. Math. 49 (2016), 107-118. https://doi.org/10.1515/dema-2016-0010.
- W. Takahashi, A Convexity in Metric Space and Nonexpansive Mappings. I., Kodai Math. J. 22 (1970), 142-149. https://doi.org/10.2996/kmj/1138846111.
- T. Shimizu, W. Takahashi, Fixed Points of Multivalued Mappings in Certain Convex Metric Spaces, Topol. Meth. Nonlinear Anal. 8 (1996), 197-203.
- M. Edelstein, The Construction of an Asymptotic Center With a Fixed-Point Property, Bull. Amer. Math. Soc. 78 (1972), 206-208.
- K. Goebel, W.A. Kirk, Topics in Metric Fixed Point Theory, 1st ed., Cambridge University Press, 1990. https://doi.org/10.1017/CBO9780511526152.
- L. Leustean, Nonexpansive Iterations in Uniformly Convex w-Hyperbolic Spaces, In: Nonlinear Analysis and Optimization I: Nonlinear Analysis, vol. 513, pp. 193-209, 2010.
- T.C. Lim, Remarks on Some Fixed Point Theorems, Proc. Amer. Math. Soc. 60 (1976), 179-182.
- A.R. Khan, H. Fukhar-ud-din, M.A. Ahmad Khan, An Implicit Algorithm for Two Finite Families of Nonexpansive Maps in Hyperbolic Spaces, Fixed Point Theory Appl. 2012 (2012), 54. https://doi.org/10.1186/1687-1812-2012-54.