On Existence and Attractivity of Ψ-Hilfer Hybrid Fractional-order Langevin Differential Equations

Main Article Content

Savita Rathee, Yogeeta Narwal


The work reported in this article studies the equivalence relationship between fractional integral equation and Ψ-Hilfer Hybrid Langevin Differential Equations of fractional order with nonlocal initial conditions, and then we use this relationship to establish the existence of the results by means of Banach algebra and Schauder’s fixed point theorem. We then demonstrate the uniform local attractiveness of all the solutions.

Article Details


  1. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, NorthHolland Mathematics Studies, vol. 204. Elsevier, Amsterdam (2006).
  2. A. Granas, J. Dugundji, Elementary Fixed Point Theorems, in: Fixed Point Theory, Springer, New York, 2003: pp. 9-84. https://doi.org/10.1007/978-0-387-21593-8_2.
  3. B.C. Dhage, On α-Condensing Mappings in Banach Algebras, Math. Stud. 63 (1994), 146-152.
  4. B.C. Dhage, V. Lakshmikantham, Basic Results on Hybrid Differential Equations, Nonlinear Anal.: Hybrid Syst. 4 (2010), 414-424. https://doi.org/10.1016/j.nahs.2009.10.005.
  5. C. Corduneanu, Integral Equations and Stability of Feedback Systems, Academic Press, New York, 1973.
  6. C. Derbazi, H. Hammouche, A. Salim, M. Benchohra, Weak Solutions for Fractional Langevin Equations Involving Two Fractional Orders in Banach Spaces, Afr. Mat. 34 (2022), 1. https://doi.org/10.1007/s13370-022-01035-3.
  7. C. Nuchpong, S.K. Ntouyas, D. Vivek, J. Tariboon, Nonlocal Boundary Value Problems for Ψ-Hilfer Fractional-Order Langevin Equations, Bound. Value Probl. 2021 (2021), 34. https://doi.org/10.1186/s13661-021-01511-y.
  8. F. Si Bachir, S. Abbas, M. Benbachir, M. Benchohra, G.M. N’Guérékata, Existence and Attractivity Results for Ψ-Hilfer Hybrid Fractional Differential Equations, Cubo. 23 (2021), 145-159. https://doi.org/10.4067/s0719-06462021000100145.
  9. J. Vanterler da C. Sousa, E. Capelas de Oliveira, On the Ψ-Hilfer Fractional Derivative, Commun. Nonlinear Sci. Numer. Simul. 60 (2018), 72-91. https://doi.org/10.1016/j.cnsns.2018.01.005.
  10. K.D. Kucche, A.D. Mali, J.V. da C. Sousa, On the Nonlinear Ψ-Hilfer Fractional Differential Equations, Comput. Appl. Math. 38 (2019), 73. https://doi.org/10.1007/s40314-019-0833-5.
  11. K.D. Kucche, A.D. Mali, On the Nonlinear Ψ-Hilfer Hybrid Fractional Differential Equations, Comput. Appl. Math. 41 (2022), 86. https://doi.org/10.1007/s40314-022-01800-x.
  12. K. Guida, L. Ibnelazyz, K. Hilal, S. Melliani, Existence and Uniqueness Results for Sequential ψ-Hilfer Fractional Pantograph Differential Equations With Mixed Nonlocal Boundary Conditions, AIMS Math. 6 (2021), 8239-8255. https://doi.org/10.3934/math.2021477.
  13. K.M. Furati, M.D. Kassim, N. Tatar, Existence and Uniqueness for a Problem Involving Hilfer Fractional Derivative, Computers Math. Appl. 64 (2012), 1616-1626. https://doi.org/10.1016/j.camwa.2012.01.009.
  14. M. Houas, A. Devi, A. Kumar, Existence and Stability Results for Fractional-Order Pantograph Differential Equations Involving Riemann-Liouville and Caputo Fractional Operators, Int. J. Dynam. Control. 11 (2022), 1386-1395. https://doi.org/10.1007/s40435-022-01005-4.
  15. R. Almeida, A Caputo Fractional Derivative of a Function With Respect to Another Function, Commun. Nonlinear Sci. Numer. Simul. 44 (2017), 460-481. https://doi.org/10.1016/j.cnsns.2016.09.006.
  16. R. Hilfer, ed., Applications of Fractional Calculus in Physics, World Scientific, Singapore (2000).
  17. R. Hilfer, Experimental Evidence for Fractional Time Evolution in Glass Forming Materials, Chem. Phys. 284 (2002), 399-408. https://doi.org/10.1016/s0301-0104(02)00670-5.
  18. R.P. Agarwal, A. Assolami, A. Alsaedi, B. Ahmad, Existence Results and Ulam–Hyers Stability for a Fully Coupled System of Nonlinear Sequential Hilfer Fractional Differential Equations and Integro-Multistrip-Multipoint Boundary Conditions, Qual. Theory Dyn. Syst. 21 (2022), 125. https://doi.org/10.1007/s12346-022-00650-6.
  19. S. Asawasamrit, A. Kijjathanakorn, S.K. Ntouyas, J. Tariboon, Nonlocal Boundary Value Problems for Hilfer Fractional Differential Equations, Bull. Korean Math. Soc. 55 (2018), 1639-1657. https://doi.org/10.4134/BKMS.B170887.
  20. S.K. Ntouyas, D. Vivek, Existence and Uniqueness Results for Sequential Ψ-Hilfer Fractional Differential Equations With Multi-Point Boundary Conditions, Acta Math. Univ. Comen. 90 (2021), 171-185.
  21. U.N. Katugampola, New Approach to a Generalized Fractional Integral, Appl. Math. Comput. 218 (2011), 860-865. https://doi.org/10.1016/j.amc.2011.03.062.
  22. V. Lakshmikantham, S. Leela, J. Vasundhara Devi, Theory of fractional dynamic systems, Cambridge Scientific Publications, Cambridge, (2009).
  23. V. Lakshmikantham, A.S. Vatsala, Theory of Fractional Differential Inequalities and Applications, Commun. Appl. Anal. 11 (2007), 395-402.
  24. Y. Zhao, S. Sun, Z. Han, Q. Li, Theory of Fractional Hybrid Differential Equations, Computers Math. Appl. 62 (2011), 1312-1324. https://doi.org/10.1016/j.camwa.2011.03.041.