A Class of Tests for Testing Better Failure Rate at Specific Age Distribution With Randomly Right Censored Data
Main Article Content
Abstract
A device has a better failure rate at specific age t0 property, denoted by BFR-t0 if its failure rate r(t) increases for t≤t0 and for t>t0, r(t) is not less than its value at t0. A test statistic is proposed to test exponentiality versus BFR-t0 based on a randomly right censored sample of size n. Kaplan-Meier estimator is used to estimate the empirical life distribution. Properties of the test are measured by power estimates, estimated risks, and test of normality. The efficiency loss due to censoring is investigated by using tests for censored sample data.
Article Details
References
- A.M. Abouammoh, A.N. Ahmed, On Renewal Failure Rate Classes of Life Distributions, Stat. Prob. Lett. 14 (1992), 211–217. https://doi.org/10.1016/0167-7152(92)90024-y.
- A. M. Abouammoh, and A. N. Ahmed, The Class of Better Failure Rate at Specific Age, Derasat, 17 (1989), 27-37.
- A.M. Abouammoh, G.R. Elkahlout, Tests of New Better than Renewal Used With Randomly Censored Samples, Parishankhyan Samikha, 6 (1999), 47-63.
- A.M. Abouammoh, G.R. Elkahlout, Tests of Randomly Censored Samples From New Better Than Renewal Used in Expectation Class of Life Distribution. Derasat, 27 (2000), 32-54.
- B. Efron, The Two-Sample Problem With Censored Data, In: Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability, Vol. IV. University of California Press, Berkeley, 831-853, (1967).
- B. Klefsjö, The HNBUE and HNWUE Classes of Life Distributions, Naval Res. Log. Quart. 29 (1982), 331-344. https://doi.org/10.1002/nav.3800290213.
- G. R. Elkahlout, Tests for Renewal Failure Rate Properties With Random Censoring, Far East J. Theor. Appl. Sci. 1 (2022), 5-24.
- H. W. Lilliefors, On the Kolmogorov-Smirnov Test for Normality With Mean and Variance Unknown. J. Amer. Stat. Assoc. 62 (1967), 399-402.
- I. Elbatal, Some Aging Classes of Life Distributions at Specific Age, Int. Math. Forum, 2 (2007), 1445–1456.
- K.B. Kulasekera, D.H. Park, The Class of Better Mean Residual Life at Age t0, Microelectronics Reliability. 27 (1987), 725-735. https://doi.org/10.1016/0026-2714(87)90019-9.
- L. Kaplan, P. Meier, Nonparametric Estimation From Incomplete Observations, J. Amer. Stat. Assoc. 53 (1958), 457-481.
- L. Zehui, L. Xiaohu, {IFR*t0} and {NBU*t0}¬ Classes of Life Distributions, J. Stat. Plan. Inference. 70 (1998), 191-200. https://doi.org/10.1016/s0378-3758(97)00188-2.
- M.A.W. Mahmoud, M.E. Moshref, A.M. Gadallah, A.I. Shawky, New classes at Specific Age: Properties and Testing hypotheses, J. Stat. Theory Appl. 12 (2013), 106-109. https://doi.org/10.2991/jsta.2013.12.1.9.
- M.C. Bryson, M.M. Siddiqui, Some Criteria for Aging, J. Amer. Stat. Assoc. 64 (1969), 1472-1483.
- M. Hollander, D.H. Park, F. Proschan, A Class of Life Distributions for Aging, J. Amer. Stat. Assoc. 81 (1986), 91-95.
- N. Breslow, J. Crowley, A Large Sample Study of the Life Table and Product Limit Estimates Under Random Censorship, Ann. Stat. 2 (1974), 437-453. https://www.jstor.org/stable/2958131.
- N. Ebrahimi, M. Habibullah, Testing Whether the Survival Distribution Is New Better than Used of Specified Age, Biometrika. 77 (1990), 212–215. https://doi.org/10.1093/biomet/77.1.212.
- N. Langberg, F. Proschan, A. Quinzi, Estimating Dependent Life Lengths, with Applications to the Theory of Competing Risks, Ann. Stat. 9 (1981), 157-167. https://www.jstor.org/stable/2240879.
- P.V. Pandit, M.P. Anuradha, On Testing Exponentiality Against New Better Than Used of Specified Age, Stat. Methodol. 4 (2007), 13-21. https://doi.org/10.1016/j.stamet.2006.02.001.
- T. Ram C, S.R. Jammalamadaka, J.N. Zalkikar, Testing an Increasing Failure Rate Average Distribution With Censored Data, Statistics. 20 (1989). 279-286. https://doi.org/10.1080/02331888908802170.
- R.E. Barlow, F. Proschan, Statistical Theory of Reliability and Life Testing: Probability Models, Holt, Reinhart and Winston Inc., New York, 1981.
- R. Gill, Large Sample Behaviour of the Product-Limit Estimator on the Whole Line, Ann. Stat. 11 (1983), 49-58. https://doi.org/10.1214/aos/1176346055.
- T. Rolski, Mean Residual Life, Int. Stat. Inst. 46 (1975), 266-270.
- V. Peterson, Nonparametric Estimation in The Competing Risks Problem, Technical Report No. 13, Division of Biostatistics, Stanford University, California, 1975.
- W. Feller, An Introduction to Probability Theory and Its Applications, Vol. 2. John Wiley & Sons, New York, 1966.
- Y. Kumazawa, On Testing Whether New is Better Than Used Using Randomly Censored Data, Ann. Stat. 15 (1987), 420-426. https://doi.org/10.1214/aos/1176350276.
- Y. Kumazawa, Tests for Increasing Failure Rate With Randomly Censored Data, Statistics. 23 (1992), 17-25. https://doi.org/10.1080/02331889208802349.
- Y.Y. Chen, M. Hollander, N.A. Langberg, Testing Whether New Is Better Than Used With Randomly Censored Data, Ann. Stat. 11 (1983), 267-274. https://www.jstor.org/stable/224048.