Geometry of Admissible Curves of Constant-Ratio in Pseudo-Galilean Space

Main Article Content

M. Khalifa Saad, H. S. Abdel-Aziz, Haytham A. Ali

Abstract

An admissible curve of a pseudo-Galilean space is said to be of constant-ratio if the ratio of the length of the tangent and normal components of its position vector function is a constant. In this paper, we investigate and characterize a spacelike admissible curve of constant-ratio in terms of its curvature functions in the pseudo-Galilean space G13. Also, we study some special curves of constantratio such as T-constant and N-constant types of these curves. Finally, we give some computational examples for constructing the meant curves to demonstrate our theoretical results.

Article Details

References

  1. B. O’Neill, Semi-Riemannian Geometry with Applications to Relativity, Academic Press, New York, 1983.
  2. B.Y. Chen, When Does the Position Vector of a Space Curve Always Lie in Its Rectifying Plane?, Amer. Math. Mon. 110 (2003), 147–152. https://doi.org/10.1080/00029890.2003.11919949.
  3. K. Ilarslan, Ö. Boyacıoğlu, Position Vectors of a Spacelike W-Curve in Minkowski Space E31, Bull. Korean Math. Soc. 46 (2009), 967-978.
  4. K. Ilarslan, E. Nesovic, On Rectifying Curves as Centrodes and Extremal Curves in the Minkowski 3-Space E31, Novi Sad J. Math. 37 (2007), 53-64.
  5. A. Yücesan, N. Ayyıldız, A. C. Çöken, On Rectifying Dual Space Curves, Rev. Mat. Complut. 20 (2007), 497-506.
  6. Z. Bozkurt, I. Gök, O.Z. Okuyucu, Characterization of Rectifying, Normal and Osculating Curves in Three Dimensional Compact Lie Groups, Life Sci. J. 10 (2013), 819-823.
  7. S. Büyükkütük, G. Öztürk, Constant Ratio Curves According to Bishop Frame in Euclidean 3-space E3, Gen. Math. Notes. 28 (2015), 81-91.
  8. S. Büyükkütük, G. Öztürk, Constant Ratio Curves According to Parallel Transport Frame in Euclidean 4-space E4, New Trends Math. Sci. 3 (2015), 171-178.
  9. S. Gürpinar, K. Arslan, G. Öztürk, A Characterization of Constant-ratio Curves in Euclidean 3-Space E3, Acta Univ. Apulensis. 44 (2015), 39-51.
  10. İ. Kişi, G. Öztürk, Constant Ratio Curves According to Bishop Frame in Minkowski 3-Space E31, Facta Univ. Ser. Math. Inform. 30 (2015), 527-538.
  11. O. Röschel, Die Geometrie des Galileischen Raumes, Habilitationsschrift, Leoben, 1984.
  12. B. Divjak, Curves in Pseudo-Galilean Geometry, Ann. Univ. Sci. Budapest. 41 (1998), 117-128.
  13. A.T. Ali, Position Vectors of Curves in the Galilean Space G3, Mat. Vesnik. 64 (2012), 200-210.
  14. H.S. Abdel-Aziz, M. Khalifa Saad, Smarandache Curves of Some Special Curves in the Galilean 3-Space, Honam Math. J. 37 (2015), 253-264. https://doi.org/10.5831/HMJ.2015.37.2.253.
  15. M.K. Saad, Spacelike and Timelike Admissible Smarandache Curves in Pseudo-Galilean Space, J. Egypt. Math. Soc. 24 (2016), 416-423. https://doi.org/10.1016/j.joems.2015.09.001.
  16. B.Y. Chen, Constant Ratio Hypersurfaces, Soochow J. Math. 27 (2001), 353-362.
  17. B.Y. Chen, Geometry of Position Functions of Riemannian Submanifolds in Pseudo-Euclidean Space, J. Geom. 74 (2002), 61–77. https://doi.org/10.1007/pl00012538.