Expectile-Based Capital Allocation

Main Article Content

Khalil Said

Abstract

This paper focuses on capital allocation using the Euler principle with Expectiles as risk measures. We delve into the allocation composition across various actuarial models, examining the influence of dependence through copulas, and studying the case of comonotonicity. Additionally, we provide expressions for marginal contributions related to some of the models under investigation.

Article Details

References

  1. P. Artzner, F. Delbaen, J.M. Eber, D. Heath, Coherent Measures of Risk, Math. Finance. 9 (1999), 203-228. https://doi.org/10.1111/1467-9965.00068.
  2. M. Bargès, H. Cossette, É. Marceau, TVaR-Based Capital Allocation With Copulas, Insurance: Math. Econ. 45 (2009), 348-361. https://doi.org/10.1016/j.insmatheco.2009.08.002.
  3. F. Bellini, V. Bignozzi, On Elicitable Risk Measures, Quant. Finance. 15 (2015), 725-733. https://doi.org/10.1080/14697688.2014.946955.
  4. F. Bellini, E. Di Bernardino, Risk Management With Expectiles, Eur. J. Finance. 23 (2015), 487-506. https://doi.org/10.1080/1351847x.2015.1052150.
  5. F. Bellini, B. Klar, A. Müller, E.R. Gianin, Generalized Quantiles as Risk Measures, Insurance: Math. Econ. 54 (2014), 41-48. https://doi.org/10.1016/j.insmatheco.2013.10.015.
  6. M. Bladt, B.F. Nielsen, On the Construction of Bivariate Exponential Distributions with an Arbitrary Correlation Coefficient, Stoch. Models. 26 (2010), 295-308. https://doi.org/10.1080/15326341003756486.
  7. K. Borch, Equilibrium in a Reinsurance Market, Econometrica. 30 (1962), 424-444.
  8. H. Cossette, M. Mailhot, É. Marceau, TVaR-Based Capital Allocation for Multivariate Compound Distributions With Positive Continuous claim amounts, Insurance: Math. Econ. 50 (2012), 247-256. https://doi.org/10.1016/j.insmatheco.2011.11.006.
  9. H. Cossette, E. Marceau, S. Perreault, On Two Families of Bivariate Distributions With Exponential Marginals: Aggregation and Capital Allocation, Insurance: Math. Econ. 64 (2015), 214-224. https://doi.org/10.1016/j.insmatheco.2015.05.007.
  10. J. Dhaene, M. Denuit, M.J. Goovaerts, R. Kaas, D. Vyncke, The Concept of Comonotonicity in Actuarial Science and Finance: Theory, Insurance: Math. Econ. 31 (2002), 3-33. https://doi.org/10.1016/s0167-6687(02)00134-8.
  11. S. Emmer, M. Kratz, D. Tasche, What Is the Best Risk Measure in Practice? A Comparison of Standard Measures, J. Risk. 18 (2015), 31-60. https://doi.org/10.21314/jor.2015.318.
  12. M. Fréchet, Sur les Tableaux de Corrélation Dont les Marges Sont Données, Ann. l’Univ. Lyon, Ser. 3, Sect. A 14 (1951), 53-77.
  13. T. Gneiting, Making and Evaluating Point Forecasts, J. Amer. Stat. Assoc. 106 (2011), 746-762. https://doi.org/10.1198/jasa.2011.r10138.
  14. W. Hoeffding, Masstabinvariante Korrelationstheorie, Schriften des mathematischen Instituts und des Instituts für angewandte Mathematik der Universität Berlin. 5 (1940), 179-233.
  15. W.K. Newey, J.L. Powell, Asymmetric Least Squares Estimation and Testing, Econometrica. 55 (1987), 819-847. https://doi.org/10.2307/1911031.
  16. T. Mao, F. Yang, Risk Concentration Based on Expectiles for Extreme Risks Under FGM Copula, Insurance: Math. Econ. 64 (2015), 429-439. https://doi.org/10.1016/j.insmatheco.2015.06.009.
  17. V. Maume-Deschamps, D. Rullière, K. Said, Multivariate Extensions of Expectiles Risk Measures, Dependence Model. 5 (2017), 20-44. https://doi.org/10.1515/demo-2017-0002.
  18. V. Maume-Deschamps, D. Rullière, K. Said, Extremes for Multivariate Expectiles, Stat. Risk Model. 35 (2018), 111-140. https://doi.org/10.1515/strm-2017-0014.
  19. OV Sarmanov, Generalized Normal Correlation and 2-Dimensional Frechet-Classes, Dokl. Akad. Nauk SSSR. 168 (1966), 32-35.
  20. D. Tasche, Conditional Expectation as Quantile Derivative, Technical Report, TU Munchen, Germany. (2000).
  21. D. Tasche, Allocating Portfolio Economic Capital to Sub-Portfolios, Economic Capital: A Practitioner Guide, Risk Books, Risk Books, 275-302, (2004).
  22. D. Tasche, Euler Allocation: Theory and Practice, Technical Report, (2007).
  23. D. Tasche, Capital Allocation to Business Units and Sub-Portfolios: The Euler Principle, (2008). https://doi.org/10.48550/arXiv.0708.2542.
  24. C.D. Lai, N. Balakrishnan, Continuous Bivariate Distributions, Springer, New York, 2009. https://doi.org/10.1007/b101765.
  25. H. Joe, Multivariate Models and Dependence Concepts, Chapman & Hall/CRC, Boca Raton, 1997.
  26. D. Balog, Capital Allocation in Financial Institutions: The Euler Method, IEHAS Discussion Papers No. MT-DP - 2011/26, Institute of Economics, Hungarian Academy of Sciences, 2011.
  27. S. Kotz, N.L. Johnson, N. Balakrishnan, N.L. Johnson, Continuous Multivariate Distributions, Wiley, New York, 2004.
  28. É. Marceau, Modélisation et Évaluation Quantitative des Risques en Actuariat: Modèles sur une Période, SpringerVerlag France, 2013.
  29. R. Nelsen, An Introduction to Copulas, Springer, New York, 2007.