Upper and Lower Weakly α-*-Continuous Multifunctions
Main Article Content
Abstract
This paper deals with the concepts of upper and lower weakly α-*-continuous multifunctions. Moreover, some characterizations of upper and lower weakly α-*-continuous multifunctions are investigated. Furthermore, the relationships between almost α-*-continuity and weak α-*-continuity are discussed.
Article Details
References
- M.E. Abd El-Monsef, E.F. Lashien, A.A. Nasef, On I -Open Sets and I - Continuous Functions, Kyungpook Math. J. 32 (1992), 21–30.
- A. Açikgöz, T. Noiri, Ş. Yüksel, On α-Operfect Sets and α-*-Closed Sets, Acta Math. Hungarica. 105 (2010), 146–153.
- A. Açikgöz, Ş. Yüksel, E. Gursel, On a New Concept of Functions in Ideal Topological Spaces, J. Fac. Sci. Ege Univ. 29 (2006), 30–35.
- A. Açikgöz, T. Noiri, Ş. Yüksel, On α-I -Continuous and α-I -Open Functions, Acta Math. Hungarica. 105 (2004), 27–37.
- C. Berge, Espaces Topologiques Fonctions Multivoques, Dunod, Paris, 1959.
- C. Boonpok, J. Khampakdee, Upper and Lower α-*-Continuity, (accepted).
- C. Boonpok, N. Srisarakham, Almost α-*-Continuity for Multifunctions, (submitted).
- C. Boonpok, On Some Types of Continuity for Multifunctions in Ideal Topological Spaces, Adv. Math., Sci. J. 9 (2020), 859–886. https://doi.org/10.37418/amsj.9.3.13.
- C. Boonpok, Weak Quasi Continuity for Multifunctions in Ideal Topological Spaces, Adv. Math., Sci. J. 9 (2020), 339–355. https://doi.org/10.37418/amsj.9.1.28.
- C. Boonpok, On Continuous Multifunctions in Ideal Topological Spaces, Lobachevskii J. Math. 40 (2019), 24–35. https://doi.org/10.1134/s1995080219010049.
- J. Cao, J. Dontchev, On Some Weaker Forms of Continuity for Multifunctions, Real Anal. Exchange, 22 (1996/97), 842–852.
- E. Ekici, T. Noiri, *-Hyperconnected Ideal Topological Spaces, Ann. Alexandru Ioan Cuza Univ. - Math. 58 (2012), 121–129. https://doi.org/10.2478/v10157-011-0045-9.
- E. Ekici, T. Noiri, *-Extremally Disconnected Ideal Topological Spaces, Acta Math. Hungarica. 122 (2009), 81–90.
- Hatir and T. Noiri, On Decompositions of Continuity via Idealization, Acta Math. Hungarica. 96 (2002), 341–349.
- D. Janković and T. R. Hamlett, New Topologies from Old via Ideals, Amer. Math. Mon. 97 (1990), 295–310. https://doi.org/10.1080/00029890.1990.11995593.
- K. Kuratowski, Topology, Vol. I, Academic Press, New York, 1966.
- A.S. Mashhour, I.A. Hasanein, S.N. El-Deeb, α-Continuous and α-Open Mapping, Acta Math. Hungarica. 41 (1983), 213–218.
- O. Njåstad, On Some Classes of Nearly Open Sets, Pac. J. Math. 15 (1965), 961–970. https://doi.org/10.2140/pjm.1965.15.961.
- T. Neubrunn, Strongly Quasi-Continuous Multivalued Mapping, in: General Topology and its Relations to Modern Analysis and Algebra VI (Prague 1986), Heldermann, Berlin, 1988, pp. 351–359.
- T. Noiri, On α- Continuous Functions, Časopis Pěst. Mat. 109 (1984), 118–126. http://dml.cz/dmlcz/108508.
- T. Noiri, Almost α-Continuous Functions, Kyungpook Math. J. 28 (1988), 71–77.
- V. Popa, T. Noiri, On Upper and Lower Weakly α-Continuous Multifunctions, Novi Sad J. Math. 32 (2002), 7–24.
- V. Popa, T. Noiri, On Upper and Lower Almost α-Continuous Multifunctions, Demonstr. Math. 24 (1996), 381– 396.
- V. Popa, T. Noiri, On Upper and Lower α-Continuous Multifunctions, Math. Slovaca, 43 (1993), 477–491.
- V. Vaidyanathswamy, The localization theory in set topology, Proc. Indian Acad. Sci. 20 (1945), 51–61.