Characteristic Picture Fuzzy Sets and Level Subsets in UP (BCC)-Algebras

Main Article Content

Pimwaree Kankaew, Sunisa Yuphaphin, Nattacha Lapo, Ronnason Chinram, Pongpun Julatha, Aiyared Iampan

Abstract

The eight new concepts of picture fuzzy sets in UP (BCC)-algebras are introduced by Kankaew et al. in 2022. This idea is extended to the lower and upper level subsets of picture fuzzy sets in UP (BCC)-algebras. Moreover, we define a picture fuzzy set in the same way as a characteristic function and study its characterizations from the related subset.

Article Details

References

  1. M. Ansari, A. Haidar, A. Koam, On a Graph Associated to UP-Algebras, Math. Comput. Appl. 23 (2018), 61. https://doi.org/10.3390/mca23040061.
  2. M.A. Ansari, A.N.A. Koam, A. Haider, Rough set theory applied to UP-algebras, Italian J. Pure Appl. Math. 42 (2019), 388-402.
  3. K.T. Atanassov, Intuitionistic fuzzy sets, Fuzzy Sets Syst. 20 (1986), 87-96. https://doi.org/10.1016/s0165-0114(86)80034-3.
  4. K.T. Atanassov, New operations defined over the intuitionistic fuzzy sets, Fuzzy Sets Syst. 61 (1994), 137-142.
  5. B.C. Cuong, Picture fuzzy sets, J. Computer Sci. Cybern. 30 (2014), 409-420. https://doi.org/10.15625/1813-9663/30/4/5032.
  6. B.C. Cuong, V. Kreinovich, Picture fuzzy sets - A new concept for computational intelligence problems, in: 2013 Third World Congress on Information and Communication Technologies (WICT 2013), IEEE, Hanoi, Vietnam, 2013: pp. 1-6. https://doi.org/10.1109/WICT.2013.7113099.
  7. N. Dokkhamdang, A. Kesorn, A. Iampan, Generalized fuzzy sets in UP-algebras, Ann. Fuzzy Math. Inform. 16 (2018), 171-190. https://doi.org/10.30948/AFMI.2018.16.2.171.
  8. A.H. Ganie, S. Singh, P.K. Bhatia, Some new correlation coefficients of picture fuzzy sets with applications, Neural Comput. Appl. 32 (2020), 12609-12625. https://doi.org/10.1007/s00521-020-04715-y.
  9. T. Guntasow, S. Sajak, A. Jomkham, et al. Fuzzy translations of a fuzzy set in UP-algebras, J. Indones. Math. Soc. 23 (2017), 1-19.
  10. Y. Huang, BCI-algebra, Science Press, Beijing, China, 2006.
  11. A. Iampan, A new branch of the logical algebra: UP-algebras, J. Algebra Related Topics. 5 (2017), 35-54. https://doi.org/10.22124/jart.2017.2403.
  12. A. Iampan, Introducing fully UP-semigroups, Discuss. Math. Gen. Algebra Appl. 38 (2018), 297-306.
  13. A. Iampan, Multipliers and near UP-filters of UP-algebras, J. Discr. Math. Sci. Cryptogr. 24 (2019), 667-680. https://doi.org/10.1080/09720529.2019.1649027.
  14. A. Iampan, A. Satirad, M. Songsaeng, A note on UP-hyperalgebras, J. Algebr. Hyperstruct. Log. Algebr. 1 (2020), 77-95. https://doi.org/10.29252/hatef.jahla.1.2.7.
  15. A. Iampan, M. Songsaeng, G. Muhiuddin, Fuzzy duplex UP-algebras, Eur. J. Pure Appl. Math. 13 (2020), 459-471. https://doi.org/10.29020/nybg.ejpam.v13i3.3752.
  16. Y. Imai, K. Iséki, On axiom systems of propositional calculi, XIV, Proc. Japan Acad. 4 (1966), 19-22. https://doi.org/10.3792/pja/1195522169.
  17. K. Iséki, An algebra related with a propositional calculus, Proc. Japan Acad. 42 (1966), 26-29. https://cir.nii.ac.jp/crid/1570009749777934080.
  18. Y.B. Jun, B. Brundha, N. Rajesh, et al. (3, 2)-fuzzy UP (BCC)-subalgebras and (3, 2)-fuzzy UP (BCC)-filters, J. Mahani Math. Res. 11 (2022), 1-14. https://doi.org/10.22103/jmmrc.2022.18786.1191.
  19. Y.B. Jun, A. Iampan, Comparative and allied UP-filters, Lobachevskii J. Math. 40 (2019), 60-66. https://doi.org/10.1134/s1995080219010086.
  20. Y.B. Jun, A. Iampan, Implicative UP-filters, Afr. Mat. 30 (2019), 1093-1101. https://doi.org/10.1007/s13370-019-00704-0.
  21. Y.B. Jun, A. Iampan, Shift UP-filters and decompositions of UP-filters in UP-algebras, Missouri J. Math. Sci. 31 (2019), 36-45. https://doi.org/10.35834/mjms/1559181624.
  22. P. Kankaew, S. Yuphaphin, N. Lapo, et al. Picture fuzzy set theory applied to UP-algebras, Missouri J. Math. Sci. 34 (2022), 94-120. https://doi.org/10.35834/2022/3401094.
  23. H.S. Kim, Y.H. Kim, On BE-algebras, Sci. Math. Japon. 66 (2007), 113-116. https://doi.org/10.32219/isms.66.1_113.
  24. Y. Komori, The class of BCC-algebras is not a variety, Math. Japon. 29 (1984), 391-394.
  25. P. Mosrijai, A. Iampan, A new branch of bialgebraic structures: UP-bialgebras, J. Taibah Univ. Sci. 13 (2019), 450-459. https://doi.org/10.1080/16583655.2019.1592932.
  26. C. Prabpayak, U. Leerawat, On ideals and congruences in KU-algebras, Sci. Magna, 5 (2009), 54-57.
  27. A. Satirad, R. Chinram, A. Iampan, Four new concepts of extensions of KU/UP-algebras, Missouri J. Math. Sci. 32 (2020), 138-157. https://doi.org/10.35834/2020/3202138.
  28. A. Iampan, A. Satirad, Topological UP-Algebras, Discuss. Math. - Gen. Algebra Appl. 39 (2019), 231-250. https://doi.org/10.7151/dmgaa.1317.
  29. A. Satirad, P. Mosrijai, A. Iampan, Formulas for Finding UP-Algebras, Int. J. Math. Computer Sci. 14 (2019), 403-409.
  30. A. Satirad, P. Mosrijai, A. Iampan, Generalized Power UP-Algebras, Int. J. Math. Computer Sci. 14 (2019), 17-25.
  31. T. Senapati, Y.B. Jun, K.P. Shum, Cubic Set Structure Applied in UP-Algebras, Discr. Math. Algorithm. Appl. 10 (2018), 1850049. https://doi.org/10.1142/s1793830918500490.
  32. T. Senapati, G. Muhiuddin, K.P. Shum, Representation of UP-Algebras in Interval-Valued Intuitionistic Fuzzy Environment, Italian J. Pure Appl. Math. 38 (2017), 497-517.
  33. P. Singh, Correlation Coefficients for Picture Fuzzy Sets, J. Intell. Fuzzy Syst. 28 (2015), 591-604. https://doi.org/10.3233/ifs-141338.
  34. J. Somjanta, N. Thuekaew, P. Kumpeangkeaw, A. Iampan, Fuzzy Sets in UP-Algebras, Ann. Fuzzy Math. Inform. 12 (2016), 739-756.
  35. G. Wei, Some cosine similarity measures for picture fuzzy sets and their applications to strategic decision making, Informatica, 28, no. 3, (2017), 547-564.
  36. G. Wei, Some Similarity Measures for Picture Fuzzy Sets and Their Applications, Iran. J. Fuzzy Syst. 15 (2018), 77-89.
  37. G. Wei, H. Gao, The Generalized Dice Similarity Measures for Picture Fuzzy Sets and Their Applications, Informatica, 29 (2018), 107-124.
  38. L.A. Zadeh, Fuzzy Sets, Inform. Control. 8 (1965), 338-353. https://doi.org/10.1016/s0019-9958(65)90241-x.