Transmission Problem Between Two Herschel-Bulkley Fluids in a Three Dimensional Thin Layer
Main Article Content
Abstract
The paper is devoted to the study of steady-state transmission problem between two Herschel-Bulkley fluids in a three dimensional thin layer.
Article Details
References
- F. Boughanim, M. Boukrouche, H. Smaoui, Asymptotic Behavior of a Non-Newtonian Flow with Stick-Slip Condition, 2004-Fez Conference on Differential Equations and Mechanics, Electron. J. Differ. Equ. Conference 11 (2004), 71-80.
- A. Bourgeat, A. Mikelic, R. Tapiéro, Dérivation des Equations Moyennées Décrivant un Ecoulement Non Newtonien Dans un Domaine de Faible Epaisseur, C. R. Acad. Sci. Paris, Ser. I 316 (1993), 965-970.
- H. Brezis, Equations et Inéquations Non Linéaires dans les Espaces en Dualité, Ann. l’Inst. Fourier, 18 (1996), 115-175.
- R. Bunoiu, S. Kesavan, Asymptotic Behaviour of a Bingham Fluid in Thin Layers, J. Math. Anal. Appl. 293 (2004), 405-418. https://doi.org/10.1016/j.jmaa.2003.10.049.
- R. Bunoin, S. Kesavan, Fluide de Bingham dans une Couche Mince, Ann. Univ. Craiova, Math. Comp. Sci. Ser. 30 (2003), 71-77.
- R. Bunoin, J.S.J. Paulin, Nonlinear Viscous Flow Through a Thin Slab in the Lubrification Case, Rev. Roum. Math. Pures Appl. 45 (2000), 577-591.
- G. Duvaut, J.L. Lions, Les Inéquations en Mécanique et en Physique, Dunod, 1976.
- I. Ekeland, R. Temam, Analyse Convexe et Problèmes Variationnels, Dunod, Paris, 1974.
- J.L. Lions, Quelques Méthodes de Résolution des Problèmes Aux Limites Non Linéaires, Dunod, 1996.
- K.F. Liu, C.C. Mei, Approximate Equations for the Slow Spreading of a Thin Sheet of Bingham Plastic Fluid, Phys. Fluids A: Fluid Dyn. 2 (1990), 30-36. https://doi.org/10.1063/1.857821.
- J. Málek, Mathematical Properties of Flows of Incompressible Power-Law-Like fluids that are Described by Implicit Constitutive Relations, Electron. Trans. Numer. Anal. 31 (2008), 110-125.
- J. Málek, M. Růžička, V.V. Shelukhin, Herschel-Bulkley fluids, Existence and Regularity of Steady Flows, Math. Models Methods Appl. Sci. 15 (2005), 1845-1861. https://doi.org/10.1142/s0218202505000996.
- F. Messelmi, B. Merouani, Flow of Herschel-Bulkley Fluid Through a Two Dimensional Thin Layer, Stud. Univ. Babeş-Bolyai Math. 58 (2013), 119-130.
- F. Messelmi, Effects of the Yield Limit on the Behaviour of Herschel-Bulkley Fluid, Nonlinear Sci. Lett. A, 2 (2011), 137-142.
- F. Messelmi, B. Merouani, F. Bouzeghaya, Steady-State Thermal Herschel-Bulkley Flow with Tresca’s Friction Law, Electron. J. Differ. Equ. 2010 (2010), 46.
- A. Mikelic, R. Tapiéro, Mathematical Derivation of the Power Law Describing Polymer Flow Through a Thin Slab, Math. Model. Numer. Anal. 29 (1995), 3-22.