Transmission Problem Between Two Herschel-Bulkley Fluids in a Three Dimensional Thin Layer

Main Article Content

Salim Saf, Farid Messelmi

Abstract

The paper is devoted to the study of steady-state transmission problem between two Herschel-Bulkley fluids in a three dimensional thin layer.

Article Details

References

  1. F. Boughanim, M. Boukrouche, H. Smaoui, Asymptotic Behavior of a Non-Newtonian Flow with Stick-Slip Condition, 2004-Fez Conference on Differential Equations and Mechanics, Electron. J. Differ. Equ. Conference 11 (2004), 71-80.
  2. A. Bourgeat, A. Mikelic, R. Tapiéro, Dérivation des Equations Moyennées Décrivant un Ecoulement Non Newtonien Dans un Domaine de Faible Epaisseur, C. R. Acad. Sci. Paris, Ser. I 316 (1993), 965-970.
  3. H. Brezis, Equations et Inéquations Non Linéaires dans les Espaces en Dualité, Ann. l’Inst. Fourier, 18 (1996), 115-175.
  4. R. Bunoiu, S. Kesavan, Asymptotic Behaviour of a Bingham Fluid in Thin Layers, J. Math. Anal. Appl. 293 (2004), 405-418. https://doi.org/10.1016/j.jmaa.2003.10.049.
  5. R. Bunoin, S. Kesavan, Fluide de Bingham dans une Couche Mince, Ann. Univ. Craiova, Math. Comp. Sci. Ser. 30 (2003), 71-77.
  6. R. Bunoin, J.S.J. Paulin, Nonlinear Viscous Flow Through a Thin Slab in the Lubrification Case, Rev. Roum. Math. Pures Appl. 45 (2000), 577-591.
  7. G. Duvaut, J.L. Lions, Les Inéquations en Mécanique et en Physique, Dunod, 1976.
  8. I. Ekeland, R. Temam, Analyse Convexe et Problèmes Variationnels, Dunod, Paris, 1974.
  9. J.L. Lions, Quelques Méthodes de Résolution des Problèmes Aux Limites Non Linéaires, Dunod, 1996.
  10. K.F. Liu, C.C. Mei, Approximate Equations for the Slow Spreading of a Thin Sheet of Bingham Plastic Fluid, Phys. Fluids A: Fluid Dyn. 2 (1990), 30-36. https://doi.org/10.1063/1.857821.
  11. J. Málek, Mathematical Properties of Flows of Incompressible Power-Law-Like fluids that are Described by Implicit Constitutive Relations, Electron. Trans. Numer. Anal. 31 (2008), 110-125.
  12. J. Málek, M. Růžička, V.V. Shelukhin, Herschel-Bulkley fluids, Existence and Regularity of Steady Flows, Math. Models Methods Appl. Sci. 15 (2005), 1845-1861. https://doi.org/10.1142/s0218202505000996.
  13. F. Messelmi, B. Merouani, Flow of Herschel-Bulkley Fluid Through a Two Dimensional Thin Layer, Stud. Univ. Babeş-Bolyai Math. 58 (2013), 119-130.
  14. F. Messelmi, Effects of the Yield Limit on the Behaviour of Herschel-Bulkley Fluid, Nonlinear Sci. Lett. A, 2 (2011), 137-142.
  15. F. Messelmi, B. Merouani, F. Bouzeghaya, Steady-State Thermal Herschel-Bulkley Flow with Tresca’s Friction Law, Electron. J. Differ. Equ. 2010 (2010), 46.
  16. A. Mikelic, R. Tapiéro, Mathematical Derivation of the Power Law Describing Polymer Flow Through a Thin Slab, Math. Model. Numer. Anal. 29 (1995), 3-22.