Composition Operators on NK(p, q)-Type Spaces on the Unit Ball

Main Article Content

H. Gissyr, M. A. Bakhit

Abstract

We describe the boundedness and compactness of the composition operators Cϕ acting in NK(p,q) on the open unit ball B.

Article Details

References

  1. M.A. Bakhit, M. Aljuaid, Basic Properties of NK(p,q) Type Spaces With Hadamard Gap Series in the Unit Ball of Cn, Res. Math. 9 (2022), 2091724. https://doi.org/10.1080/27684830.2022.2091724.
  2. J. Dai, C. Ouyang, Composition Operators Between Bloch Type Spaces in the Unit Ball, Acta Math. Sci. 34 (2014), 73-81. https://doi.org/10.1016/s0252-9602(13)60127-7.
  3. J.M. Fan, Y.F. Lu, Y.X. Yang, Difference of Composition Operators on Some Analytic Function Spaces, Acta. Math. Sin.-English Ser. 37 (2021), 1384-1400. https://doi.org/10.1007/s10114-021-0480-9.
  4. J.H. Shapiro, Composition Operators and Classical Function Theory, Springer New York, 1993. https://doi.org/10.1007/978-1-4612-0887-7.
  5. W. Rudin, Function Theory in the Unit Ball of Cn, Springer, Berlin, 2008. https://doi.org/10.1007/978-3-540-68276-9.
  6. H. Wulan, J. Zhou, QK Type Spaces of Analytic Functions, J. Funct. Spaces Appl. 4 (2006), 73-84. https://doi.org/10.1155/2006/910813.
  7. H. Wulan, and J. Zhou, The Higher Order Derivatives of QK Type Spaces, J. Math. Anal. Appl. 332 (2007), 1216-1228. https://doi.org/10.1016/j.jmaa.2006.10.082.
  8. S. Xu, X. Zhang, Composition Operator on F (p, q, s) Spaces in the Unit Ball of Cn, Complex Var. Elliptic Equ. (2022). https://doi.org/10.1080/17476933.2022.2142783.
  9. X. Zhang, S. Xu, S. Li and J. Xiao, Composition operators on F (p, q, s) type spaces in the unit ball of Cn, Complex Anal. Oper. Theory. 12 (2016), 141-154. https://doi.org/10.1007/s11785-016-0610-z.
  10. X. Zhu, Products of Differentiation, Composition and Multiplication From Bergman Type Spaces to Bers Type Spaces, Integral Transforms Spec. Funct. 18 (2007), 223-231. https://doi.org/10.1080/10652460701210250.
  11. K. Zhu, Spaces of Holomorphic Functions in the Unit Ball, Springer, New York, 2005. https://doi.org/10.1007/0-387-27539-8.
  12. K. Zhu, Operator Theory in Function Spaces, Second Edition, Mathematical Surveys and Monographs, Vol. 138, American Mathematical Society, Providence, Rhode Island, 2007.