δs(Λ, s)-R0 Spaces and δs(Λ, s)-R1 Spaces

Main Article Content

Chawalit Boonpok, Jeeranunt Khampakdee

Abstract

Our main purpose is to introduce the notions of δs(Λ, s)-R0 spaces and δs(Λ, s)-R1 spaces. Moreover, several characterizations of δs(Λ, s)-R0 spaces and δs(Λ, s)-R1 spaces are investigated.

Article Details

References

  1. C. Boonpok, C. Viriyapong, On Some Forms of Closed Sets and Related Topics, Eur. J. Pure Appl. Math. 16 (2023), 336-362. https://doi.org/10.29020/nybg.ejpam.v16i1.4582.
  2. F. Cammaroto, T. Noiri, On Λm-Sets and Related Topological Spaces, Acta Math Hung. 109 (2005), 261-279. https://doi.org/10.1007/s10474-005-0245-4.
  3. M. Caldas, M. Ganster, D.N. Georgiou, S. Jafari, S. P. Moshokoa, δ-Semiopen Sets in Topology, Topol. Proc. 29 (2005), 369-383.
  4. M. Caldas, S. Jafari, T. Noiri, Characterizations of Λθ-R0 and Λθ-R1 Topological Spaces, Acta Math. Hung. 103 (2004), 85–95. https://doi.org/10.1023/B:AMHU.0000028238.17482.54.
  5. M. Caldas, D.N. Georgiou, S. Jafari, T. Noiri, More on δ-Semiopen Sets, Note Mat. 22 (2003), 113–126.
  6. M.C. Cueva, J. Dontchev, G.Λs -Sets and G.Vs -Sets, arXiv:math/9810080 [math.GN], (1998). http://arxiv.org/abs/math/9810080.
  7. A.S. Davis, Indexed Systems of Neighborhoods for General Topological Spaces, Amer. Math. Mon. 68 (1961), 886–894. https://doi.org/10.1080/00029890.1961.11989785.
  8. C. Dorsett, R0 and R1 Topological Spaces, Mat. Vesnik, 2 (1978), 117–122.
  9. C. Dorsett, Semi-T2, Semi-R1 and Semi-R0 Topological Spaces, Ann. Soc. Sci. Bruxelles, 92 (1978), 143–150.
  10. K.K. Dube, A Note on R1 Topological Spaces, Period Math. Hung. 13 (1982), 267–271.
  11. K.K. Dube, A Note on R0 Topological Spaces, Mat. Vesnik, 11 (1974), 203–208.
  12. N. Levine, Semi-Open Sets and Semi-Continuity in Topological Spaces, Amer. Math. Mon. 70 (1963), 36–41. https://doi.org/10.1080/00029890.1963.11990039.
  13. S. Lugojan, Generalized Topology, Stud. Cerc. Mat. 34 (1982), 348–360.
  14. S.N. Maheshwari, R. Prasad, On (R0)s -Spaces, Portug. Math. 34 (1975), 213–217.
  15. M.G. Murdeshwar, S.A. Naimpally, R1-topological spaces, Canad. Math. Bull. 9 (1966), 521–523.
  16. S.A. Naimpally, On R0 Topological Spaces, Ann. Univ. Sci. Budapest Eötvös Sect. Math. 10 (1967), 53–54.
  17. T. Noiri, Unified Characterizations for Modifications of R0 and R1 Topological Spaces, Rend. Circ. Mat. Palermo (2), 60 (2006), 29–42.
  18. T. Noiri, Remarks on δ-Semi-Open Sets and δ-Preopen Sets, Demonstr. Math. 36 (2003), 1007–1020.
  19. J.H. Park, B.Y. Lee, M.J. Son, On δ-Semiopen Sets in Topological Spaces, J. Indian Acad. Math. 19 (1997), 59–67.
  20. P. Pue-on, C. Boonpok, On δs(Λ, s)-Open Sets in Topological Spaces, Int. J. Math. Comput. Sci. 18 (2023), 749–753.
  21. N.A. Shanin, On Separation in Topological Spaces, Dokl. Akad. Nauk. SSSR, 38 (1943), 110–113.
  22. N. Srisarakham, C. Boonpok, On Characterizations of δp(Λ, s)-D1 Spaces, Int. J. Math. Comput. Sci. 18 (2023), 743–747.
  23. N.V. Veličko, H-Closed Topological Spaces, Amer. Math. Soc. Transl. 78 (1968), 102–118.