δs(Λ, s)-R0 Spaces and δs(Λ, s)-R1 Spaces
Main Article Content
Abstract
Our main purpose is to introduce the notions of δs(Λ, s)-R0 spaces and δs(Λ, s)-R1 spaces. Moreover, several characterizations of δs(Λ, s)-R0 spaces and δs(Λ, s)-R1 spaces are investigated.
Article Details
References
- C. Boonpok, C. Viriyapong, On Some Forms of Closed Sets and Related Topics, Eur. J. Pure Appl. Math. 16 (2023), 336-362. https://doi.org/10.29020/nybg.ejpam.v16i1.4582.
- F. Cammaroto, T. Noiri, On Λm-Sets and Related Topological Spaces, Acta Math Hung. 109 (2005), 261-279. https://doi.org/10.1007/s10474-005-0245-4.
- M. Caldas, M. Ganster, D.N. Georgiou, S. Jafari, S. P. Moshokoa, δ-Semiopen Sets in Topology, Topol. Proc. 29 (2005), 369-383.
- M. Caldas, S. Jafari, T. Noiri, Characterizations of Λθ-R0 and Λθ-R1 Topological Spaces, Acta Math. Hung. 103 (2004), 85–95. https://doi.org/10.1023/B:AMHU.0000028238.17482.54.
- M. Caldas, D.N. Georgiou, S. Jafari, T. Noiri, More on δ-Semiopen Sets, Note Mat. 22 (2003), 113–126.
- M.C. Cueva, J. Dontchev, G.Λs -Sets and G.Vs -Sets, arXiv:math/9810080 [math.GN], (1998). http://arxiv.org/abs/math/9810080.
- A.S. Davis, Indexed Systems of Neighborhoods for General Topological Spaces, Amer. Math. Mon. 68 (1961), 886–894. https://doi.org/10.1080/00029890.1961.11989785.
- C. Dorsett, R0 and R1 Topological Spaces, Mat. Vesnik, 2 (1978), 117–122.
- C. Dorsett, Semi-T2, Semi-R1 and Semi-R0 Topological Spaces, Ann. Soc. Sci. Bruxelles, 92 (1978), 143–150.
- K.K. Dube, A Note on R1 Topological Spaces, Period Math. Hung. 13 (1982), 267–271.
- K.K. Dube, A Note on R0 Topological Spaces, Mat. Vesnik, 11 (1974), 203–208.
- N. Levine, Semi-Open Sets and Semi-Continuity in Topological Spaces, Amer. Math. Mon. 70 (1963), 36–41. https://doi.org/10.1080/00029890.1963.11990039.
- S. Lugojan, Generalized Topology, Stud. Cerc. Mat. 34 (1982), 348–360.
- S.N. Maheshwari, R. Prasad, On (R0)s -Spaces, Portug. Math. 34 (1975), 213–217.
- M.G. Murdeshwar, S.A. Naimpally, R1-topological spaces, Canad. Math. Bull. 9 (1966), 521–523.
- S.A. Naimpally, On R0 Topological Spaces, Ann. Univ. Sci. Budapest Eötvös Sect. Math. 10 (1967), 53–54.
- T. Noiri, Unified Characterizations for Modifications of R0 and R1 Topological Spaces, Rend. Circ. Mat. Palermo (2), 60 (2006), 29–42.
- T. Noiri, Remarks on δ-Semi-Open Sets and δ-Preopen Sets, Demonstr. Math. 36 (2003), 1007–1020.
- J.H. Park, B.Y. Lee, M.J. Son, On δ-Semiopen Sets in Topological Spaces, J. Indian Acad. Math. 19 (1997), 59–67.
- P. Pue-on, C. Boonpok, On δs(Λ, s)-Open Sets in Topological Spaces, Int. J. Math. Comput. Sci. 18 (2023), 749–753.
- N.A. Shanin, On Separation in Topological Spaces, Dokl. Akad. Nauk. SSSR, 38 (1943), 110–113.
- N. Srisarakham, C. Boonpok, On Characterizations of δp(Λ, s)-D1 Spaces, Int. J. Math. Comput. Sci. 18 (2023), 743–747.
- N.V. Veličko, H-Closed Topological Spaces, Amer. Math. Soc. Transl. 78 (1968), 102–118.