On Degree-Based Topological Indices of Toeplitz Graphs

Main Article Content

R. M. K. Iqbal, M. Ahmad, A. Qayyum, S. S. Supadi, M. J. Hussain, S. Raza

Abstract

In this research paper, the determination of the orientation of a linear interpolation in an interconnected graph can be achieved by measuring its distance from a group of sonar stations strategically positioned within the graph. The study utilizes the metric dimension of toeplitz graphs. Several indices play a crucial role in analyzing motivating activities within such complex structures. The indices covered in this study include the general connectivity index of the toeplitz graph, zagreb indices, symmetric division degree index and randic indices, among others.

Article Details

References

  1. M.H. Khalifeh, H. Yousefi-Azari, A.R. Ashrafi, The First and Second Zagreb Indices of Some Graph Operations, Discr. Appl. Math. 157 (2009), 804–811. https://doi.org/10.1016/j.dam.2008.06.015.
  2. G.H. Shirdela, H. Rezapour, A.M. Sayadi, The Hyper-Zagreb Index of Graph Operations, Iran. J. Math. Chem. 4 (2013), 213–220.
  3. S.M. Sankarraman, A Computational Approach on Acetaminophen Drug Using Degree-Based Topological Indices and M-Polynomials, Biointerface Res. Appl. Chem. 12 (2021), 7249–7266. https://doi.org/10.33263/briac126.72497266.
  4. I. Gutman, Multiplicative Zagreb Indices of Trees, Bull.Soc.Math. Banja Luka. 18 (2011), 17–23.
  5. S. Hayat, M. Imran, On Degree Based Topological Indices of Certain Nanotubes, J. Comput. Theor. Nanosci. 12 (2015), 1599–1605. https://doi.org/10.1166/jctn.2015.3935.
  6. E. Estrada, L. Torres, L. Rodriguez, I. Gutman, An Atom-Bond Connectivity Index: Modelling the Enthalpy of Formation of Alkanes, Indian J. Chem. 37A (1998), 849–855.
  7. X. Ren, X. Hu, B. Zhao, Proving a Conjecture Concerning Trees With Maximal Reduced Reciprocal Randic Index, MATCH Commun. Math. Comput. Chem. 76 (2016), 171–184.
  8. B. Furtula, I. Gutman, A Forgotten Topological Index, J. Math. Chem. 53 (2015), 1184–1190. https://doi.org/10.1007/s10910-015-0480-z.
  9. A.R. Ashrafi, M. Mirzargar, PI, Szeged and Edge Szeged Indices of an Infinite Family of Nanostar Dendrimers, Indian J. Chem. 47A (2008), 538–541. http://nopr.niscpr.res.in/handle/123456789/2084.
  10. Z. Chen, M. Dehmer, F. Emmert-Streib, Y. Shi, Entropy Bounds for Dendrimers, Appl. Math. Comput. 242 (2014), 462–472. https://doi.org/10.1016/j.amc.2014.05.105.
  11. M.V. Diudea, A.E. Vizitiu, M. Mirzagar, A.R. Ashrafi, Sadhana Polynomial in Nano-Dendrimers, Carpathian J. Math. 26 (2010), 59–66. https://www.jstor.org/stable/43999432.
  12. B. Bollobás, P. Erdös, Graphs of Extremal Weights, Ars Comb. 50 (1998), 225–233.
  13. B. Zhou, N. Trinajstić, On General Sum-Connectivity Index, J. Math. Chem. 47 (2009), 210–218. https://doi.org/10.1007/s10910-009-9542-4.
  14. A. Asghar, A. Qayyum, N. Muhammad, Different Types of Topological Structures by Graphs, Eur. J. Math. Anal. 3 (2022), 3. https://doi.org/10.28924/ada/ma.3.3.
  15. Z.H. Niazi, M.A.T. Bhatti, M. Aslam, Y. Qayyum, M. Ibrahim, A. Qayyum, d-Lucky Labeling of Some Special Graphs, Amer. J. Math. Anal. 10 (2022), 3–11. https://doi.org/10.12691/ajma-10-1-2.
  16. M. Ahmad, S. Hussain, U. Parveen, I. Zahid, M. Sultan, A. Qayyum, On Degree-Based Topological Indices of Petersen Subdivision Graph, Eur. J. Math. Anal. 3 (2023), 20. https://doi.org/10.28924/ada/ma.3.20.
  17. M. Ahmad, M.J. Hussain, G. Atta, S. Raza, I. Waheed, A. Qayyum, Topological Evaluation of Four Para-Line Graphs Absolute Pentacene Graphs Using Topological Indices, Int. J. Anal. Appl. 21 (2023), 66. https://doi.org/10.28924/2291-8639-21-2023-66.