Solving Coupled Impulsive Fractional Differential Equations With Caputo-Hadamard Derivatives in Phase Spaces
Main Article Content
Abstract
In this manuscript, we incorporate Caputo-Hadamard derivatives in impulsive fractional differential equations to obtain a new class of impulsive fractional form. Further, the existence of solutions to the proposed problem has been inferred under a state-dependent delay and suitable hypotheses in phase spaces. Finally, the considered problem has been supported by an illustrative application.
Article Details
References
- S. Abbas, M. Benchohra, J.R. Graef, J. Henderson, Implicit Fractional Differential and Integral Equations: Existence and Stability, De Gruyter, Berlin, (2018).
- M.I. Abbas, M. Alessandra Ragusa, Solvability of Langevin Equations With Two Hadamard Fractional Derivatives via Mittag-Leffler Functions, Appl. Anal. 101 (2021), 3231–3245. https://doi.org/10.1080/00036811.2020.1839645.
- R. Hilfer, Applications of Fractional Calculus in Physics, World Scientific, Singapore, (2000).
- A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, NorthHolland Mathematics Studies, 204. Elsevier, Amsterdam, (2006).
- S. Muthaiah, D. Baleanu, N. Gopal Thangaraj, Existence and Hyers-Ulam Type Stability Results for Nonlinear Coupled System of Caputo-Hadamard Type Fractional Differential Equations, AIMS Math. 6 (2021), 168–194. https://doi.org/10.3934/math.2021012.
- I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, (1999).
- Humaira, H.A. Hammad, M. Sarwar, M. De la Sen, Existence Theorem for a Unique Solution to a Coupled System of Impulsive Fractional Differential Equations in Complex-Valued Fuzzy Metric Spaces, Adv. Diff. Equ. 2021 (2021), 242. https://doi.org/10.1186/s13662-021-03401-0.
- H.A. Hammad, M. De la Sen, Analytical Solution of Urysohn Integral Equations by Fixed Point Technique in Complex Valued Metric Spaces, Mathematics. 7 (2019), 852. https://doi.org/10.3390/math7090852.
- H.A. Hammad, M. Zayed, Solving Systems of Coupled Nonlinear Atangana–Baleanu-Type Fractional Differential Equations, Bound Value Probl. 2022 (2022), 101. https://doi.org/10.1186/s13661-022-01684-0.
- R.P. Agarwal, M. Benchohra, S. Hamani, A Survey on Existence Results for Boundary Value Problems of Nonlinear Fractional Differential Equations and Inclusions, Acta Appl. Math. 109 (2008), 973–1033. https://doi.org/10.1007/s10440-008-9356-6.
- M. Benchohra, J. Henderson, S.K. Ntouyas, A. Ouahab, Existence Results for Fractional Order Functional Differential Equations With Infinite Delay, J. Math. Anal. Appl. 338 (2008), 1340–1350. https://doi.org/10.1016/j.jmaa.2007.06.021.
- H.A. Hammad, M. De la Sen, Stability and Controllability Study for Mixed Integral Fractional Delay Dynamic Systems Endowed with Impulsive Effects on Time Scales, Fractal Fract. 7 (2023), 92. https://doi.org/10.3390/fractalfract7010092.
- H.A. Hammad, H. Aydi, H. Işık, M. De la Sen, Existence and Stability Results for a Coupled System of Impulsive Fractional Differential Equations With Hadamard Fractional Derivatives, AIMS Math. 8 (2023), 6913–6941. https://doi.org/10.3934/math.2023350.
- M.I. Abbas, M. Alessandra Ragusa, Solvability of Langevin Equations With Two Hadamard Fractional Derivatives via Mittag-leffler Functions, Appl. Anal. 101 (2021), 3231–3245. https://doi.org/10.1080/00036811.2020.1839645.
- J.K. Hale and S.M.V. Lunel, Introduction to Functional Differential Equations, Applied Mathematical Sciences, 99, Springer-Verlag, New York, (1993).
- V. Kolmanovskii, A. Myshkis, Introduction to the Theory and Applications of Functional Differential Equations, Kluwer Academic Publishers, Dordrecht, (1999).
- V. Lakshmikantham, D.D. Bainov, P.S. Simeonov, Theory of Impulsive Differntial Equations, Worlds Scientific, Singapore, (1989).
- C. Corduneanu, V. Lakshmikantham, Equations With Unbounded Delay: A Survey, Nonlinear Anal.: Theory Methods Appl. 4 (1980), 831–877. https://doi.org/10.1016/0362-546x(80)90001-2.
- J. Hale, J. Kato, Phase Space for Retarded Equations With Infinite Delay, Funkcial. Ekvac. 21 (1978), 11–41.
- F. Kappel, W. Schappacher, Some Considerations to the Fundamental Theory of Infinite Delay Equations, J. Diff. Equ. 37 (1980), 141–183.
- K. Schumacher, Existence and Continuous Dependence for Functional-Differential Equations With Unbounded Delay, Arch. Rational Mech. Anal. 67 (1978), 315–335. https://doi.org/10.1007/bf00247662.
- A.V. Rezounenko, J. Wu, A Non-Local Pde Model for Population Dynamics With State-Selective Delay: Local Theory and Global Attractors, J. Comput. Appl. Math. 190 (2006), 99–113. https://doi.org/10.1016/j.cam.2005.01.047.
- D.R. Willé, C.T.H. Baker, Stepsize Control and Continuity Consistency for State-Dependent Delay-Differential Equations, J. Comput. Appl. Math. 53 (1994), 163-170. https://doi.org/10.1016/0377-0427(94)90043-4.
- N. Abada, R.P. Agarwal, M. Benchohra, H. Hammouche, Existence Results for Nondensely Defined Impulsive Semilinear Functional Differential Equations With State-Dependent Delay, Asian-Eur. J. Math. 01 (2008), 449– 468. https://doi.org/10.1142/s1793557108000382.
- E.H.A. Dads, K. Ezzinbi, Boundedness and Almost Periodicity for Some State-Dependent Delay Differential Equations, Electron. J. Diff. Equ. 2002 (2002), 67.
- A. Anguraj, M.M. Arjunaj and E.M. Hernandez, Existence Results for an Impulsive Neutral Functional Differential Equation With State-Dependent Delay, Appl. Anal. 86 (2007), 861-872. https://doi.org/10.1080/00036810701354995.
- E. Hernandez, A. Prokopczyk, L. Ladeira, A Note on Partial Functional Differential Equations With State-Dependent Delay, Nonlinear Anal.: Real World Appl. 7 (2006), 510–519. https://doi.org/10.1016/j.nonrwa.2005.03.014.
- E. Hernandez, R. Sakthivel, S.T. Aki, Existence Results for Impulsive Evolution Differential Equations With StateDependent Delay, Electron. J. Diff. Equ. 2008 (2008), 28.
- H.A. Hammad, M.D. la Sen, H. Aydi, Generalized Dynamic Process for an Extended Multi-Valued F -Contraction in Metric-Like Spaces With Applications, Alexandria Eng. J. 59 (2020), 3817–3825. https://doi.org/10.1016/j.aej.2020.06.037.
- H.A. Hammad, H. Aydi, M. Zayed, Involvement of the Topological Degree Theory for Solving a Tripled System of Multi-Point Boundary Value Problems, AIMS Math. 8 (2022), 2257–2271. https://doi.org/10.3934/math.2023117.
- H.A. Hammad, M.F. Bota, L. Guran, Wardowski’s Contraction and Fixed Point Technique for Solving Systems of Functional and Integral Equations, J. Funct. Spaces. 2021 (2021), 7017046. https://doi.org/10.1155/2021/7017046.
- M.A. Darwish, S.K. Ntouyas, Semilinear Functional Differential Equations of Fractional Order With StateDependent Delay, Electron. J. Diff. Equ. 2009 (2009), 38.
- M. Benchohra, F. Berhoun, Impulsive Fractional Differential Equations With State-Dependent Delay, Commun. Appl. Anal. 14 (2010), 213–224.
- F. Jarad, T. Abdeljawad, D. Baleanu, Caputo-Type Modification of the Hadamard Fractional Derivatives, Adv. Diff. Equ. 2012 (2012), 142. https://doi.org/10.1186/1687-1847-2012-142.
- Y. Hino, S. Murakami, T. Naito, Functional Differential Equations with Unbounded Delay, Springer-Verlag, Berlin, (1991).