Almost Pseudo Symmetric Kähler Manifolds Admitting Conformal Ricci-Yamabe Metric
Main Article Content
Abstract
The novelty of the paper is to investigate the nature of conformal Ricci-Yamabe soliton on almost pseudo symmetric, almost pseudo Bochner symmetric, almost pseudo Ricci symmetric and almost pseudo Bochner Ricci symmetric Kähler manifolds. Also, we explore the harmonic aspects of conformal η-Ricci-Yamabe soliton on Kähler spcetime manifolds with a harmonic potential function f and deduce the necessary and sufficient conditions for the 1-form η, which is the g-dual of the vector field ξ on such spacetime to be a solution of Schrödinger-Ricci equation.
Article Details
References
- A. Gray, Einstein-Like Manifolds Which Are Not Einstein, Geom. Dedicata. 7 (1978), 259-280. https://doi.org/10.1007/bf00151525.
- D.E. Blair, Contact Manifolds in Riemannian Geometry, Springer Berlin Heidelberg, Berlin, Heidelberg, 1976. https://doi.org/10.1007/BFb0079307.
- D. Narain, S. Yadav, On Weak Concircular Symmetries of Lorentzian Concircular Structure Manifolds, Cubo. 15 (2013), 33–42. https://doi.org/10.4067/s0719-06462013000200003.
- N. Basu, A. Bhattacharyya, Conformal Ricci Soliton in Kenmotsu Manifold, Glob. J. Adv. Res. Class. Modern Geom. 4 (2015), 15-21.
- M.C. Chaki, On Pseudo Symmetric Manifolds, An. Stiint. Univ. Al. I. Cuza Iasi. Mat. (N.S.) 33 (1987), 53-58.
- G. Catino, L. Mazzieri, Gradient Einstein Solitons, Nonlinear Anal. 132 (2016), 66–94. https://doi.org/10.1016/j.na.2015.10.021.
- M.C. Chaki, B. Gupta, On Conformally Symmetric Spaces, Indian J. Math. 5 (1963), 113-295.
- B. Chow, S.C. Chu, D. Glickenstein, et al. The Ricci Flow: Techniques and Applications, American Mathematical Society, Providence, Rhode Island, 2007. https://doi.org/10.1090/surv/144.
- E. Cartan, Sur une Classe Remarquable d’Espaces de Riemann, Bul. Soc. Math. France. 2 (1926), 214–264. https://doi.org/10.24033/bsmf.1105.
- R. Deszcz, On Pseudo Symmetric Spaces, Bull. Soc. Math. Belg., Ser. A. 44 (1992), 1–34.
- U.C. De, S. Mallick, On Almost Pseudo Concircularly Symmetric Manifolds, J. Math. Computer Sci. 04 (2012), 317–330. https://doi.org/10.22436/jmcs.04.03.05.
- U.C. De, A. Sardar, K. De, Ricci-Yamabe Solitons and 3-Dimensional Riemannian Manifolds, Turk. J. Math. 46 (2022), 1078–1088. https://doi.org/10.55730/1300-0098.3143.
- F.Ö. Zengin, S. Altay, On Weakly and Pseudo Symmetric Riemannian Spaces, Indian J. Pure Appl. Math. 33 (2001), 1477–1488.
- A.E. Fischer, An Introduction to Conformal Ricci Flow, Class. Quantum Grav. 21 (2004), S171–S218. https://doi.org/10.1088/0264-9381/21/3/011.
- S. Güler, M. Crasmareanu, Ricci-Yamabe Maps for Riemannian Flows and Their Volume Variation and Volume Entropy, Turk. J. Math. 43 (2019), 2631–2641. https://doi.org/10.3906/mat-1902-38.
- A. Haseeb, M.A. Khan, Conformal η-Ricci-Yamabe Solitons Within the Framework of -LP-Sasakian 3-Manifolds, Adv. Math. Phys. 2022 (2022), 3847889. https://doi.org/10.1155/2022/3847889.
- R.S. Hamilton, Three-Manifolds With Positive Ricci Curvature, J. Differ. Geom. 17 (1982), 255–306. https://doi.org/10.4310/jdg/1214436922.
- R.S. Hamilton, The Ricci Flow on Surfaces, Contemp. Math. 71 (1988), 237–261. https://cir.nii.ac.jp/crid/1571980075402918784.
- M. Ahmad, Gazala, M.A. Al-Shabrawi, A Note on LP-Kenmotsu Manifolds Admitting Conformal Ricci-Yamabe Solitons, Int. J. Anal. Appl. 21 (2023), 32. https://doi.org/10.28924/2291-8639-21-2023-32.
- A. Haseeb, S.K. Chaubey, M.A. Khan, Riemannian 3-Manifolds and Ricci-Yamabe Solitons, Int. J. Geom. Methods Mod. Phys. 20 (2023), 2350015. https://doi.org/10.1142/s0219887823500159.
- A. Haseeb, M. Bilal, S.K. Chaubey, et al. ζ-Conformally Flat LP-Kenmotsu Manifolds and Ricci-Yamabe Solitons, Mathematics. 11 (2022), 212. https://doi.org/10.3390/math11010212.
- A. Haseeb, U.C. De, η-Ricci Solitons in -Kenmotsu Manifolds, J. Geom. 110 (2019), 34. https://doi.org/10.1007/s00022-019-0490-2.
- A.A. Shaikh, S.K. Hui, C.S. Bagewadi, On Quasi-Conformally Flat Almost Pseudo Ricci Symmetric Manifolds, Tamsui Oxford J. Math. Sci. 26 (2010), 203–219.
- Z.I. Szabó, Structure Theorems on Riemannian Spaces Satisfying R(X, Y ) · R = 0. I. The Local Version, J. Differ. Geom. 17 (1982), 531–582. https://doi.org/10.4310/jdg/1214437486.
- L. Tamassy, T.Q. Binh, On Weakly Symmetric and Weakly Projective Symmetric Riemannian Manifolds, Coll. Math. Soc., J. Bolyai. 50 (1989), 663–670. https://cir.nii.ac.jp/crid/1571980075775193856.
- L. Tamassy, U.C. De, T.Q. Binh, On Weak Symmetries of Ka¨hler Manifolds, Balkan J. Geom. Appl. 5 (2000), 149–155.
- P. Zhang, Y. Li, S. Roy, et al. A. Bhattacharyya, Geometrical Structure in a Perfect Fluid Spacetime with Conformal Ricci-Yamabe Soliton, Symmetry. 14 (2022), 594. https://doi.org/10.3390/sym14030594.
- Y. Li, A. Haseeb, M. Ali, LP-Kenmotsu Manifolds Admitting η-Ricci-Yamabe Solitons and Spacetime, J. Math. 2022 (2022), 6605127. https://doi.org/10.1155/2022/6605127.