Vague Bi-Quasi-Interior Ideals of Γ-Semirings
Main Article Content
Abstract
In this paper, we introduce and study the concept of vague bi-quasi-interior ideals of Γ-semirings as a generalization of vague bi-ideals, vague quasi-ideals, vague interior ideals, vague bi-quasi-interior ideals, and vague bi-quasi-interior ideals of Γ-semirings.
Article Details
References
- Y. Bhargavi, A Study on Translational Invariant Vague Set of a Γ-Semiring, Afr. Mat. 31 (2020), 1273–1282. https://doi.org/10.1007/s13370-020-00794-1.
- Y. Bhargavi, Vague Interior Ideals of a Γ-Semiring, (Communicated).
- Y. Bhargavi, T. Eswarlal, Vague Γ-Semirings, Glob. J. Pure Appl. Math. 11 (2015), 117-128.
- Y. Bhargavi, T. Eswarlal, Vague Semiprime Ideals of a Γ-Semirings, Afr. Mat. 29 (2018), 425-434. https://doi.org/10.1007/s13370-018-0551-y.
- Y. Bhargavi, S. Ragamayi, T. Eswarlal, P. Bindu, Vague Anti Homomorphism of a Γ-Semirings, Adv. Math. Sci. J. 9 (2020), 3307-3314. https://doi.org/10.37418/amsj.9.6.10.
- Y. Bhargavi, S. Ragamayi, T. Eswarlal, G. Jayalalitha, Vague Bi-Interior Ideals of a Γ-Semiring, Adv. Math. Sci. J. 9 (2020), 4425-4435. https://doi.org/10.37418/amsj.9.7.13.
- W.L. Gau, D.J. Buehrer, Vague Sets, IEEE Trans. Syst., Man, Cybern. 23 (1993), 610-614. https://doi.org/10.1109/21.229476.
- P. Madhu Latha, Y. Bhargavi, Bipolar Fuzzy Γ-Semirings, AIP Conf. Proc. 2707 (2023), 020006. https://doi.org/10.1063/5.0143364.
- M.M.K. Rao, A Study of Bi-Quasi-Interior Ideal as a New Generalization of Ideal of Generalization of Semiring, J. Int. Math. Virtual Inst. 9 (2019), 19-35.
- M.M.K. Rao, Γ-Semirings, Southeast Asian Bull. Math. 19 (1995), 49-54.
- M.M.K. Rao, B. Venkateswarlu, Bi-Interior Ideals of Γ-Semirings, Discuss. Math. Gen. Algebra Appl. 38 (2018), 239-254. https://doi.org/10.7151/dmgaa.1296.
- M.M.K. Rao, B. Venkateswarlu, N. Rafi, Left Bi-Quasi Ideals of Γ-Semirings, Asia Pac. J. Math. 4 (2017), 144-153.
- L.A. Zadeh, Fuzzy Sets, Inf. Control, 8 (1965), 338-353. https://doi.org/10.1016/S0019-9958(65)90241-X.