New Characterizations of the Jeribi Essential Spectrum
Main Article Content
Abstract
In this paper, we give several characterizations of the Jeribi essential spectrum of a bounded linear operator defined on a Banach space by using the notion of almost weakly compact operators. As a consequence, we prove the stability of the Jeribi essential spectrum under compact perturbations. Furthermore, some characterizations of the Jeribi essential spectra of 3×3 upper triangular block operator matrix are also given.
Article Details
References
- B. Abdelmoumen, S. Yengui, Perturbation theory, M-essential spectra of operator matrices, Filomat. 34 (2020) 1187-1196. https://doi.org/10.2298/fil2004187a.
- C. Belabbaci, The S-Jeribi essential spectrum, Ukr. Mat. Zhurn. 73 (2021), 308–313. https://doi.org/10.37863/umzh.v73i3.163.
- S. Charfi, A. Jeribi, I. Walha, Essential spectra, matrix operator and applications, Acta Appl. Math. 111 (2009), 319–337. https://doi.org/10.1007/s10440-009-9547-9.
- M. Damak, A. Jeribi, On the essential spectra of matrix operators and applications, Electron. J. Differ. Equ. 2007 (2007), 11.
- M. González, A. Martínez-Abejón, Tauberian operators, Birkhäuser, Basel, 2010.
- R.H. Herman, Generalizations of weakly compact operators, Trans. Amer. Math. Soc. 132 (1968), 377–386. https://doi.org/10.1090/s0002-9947-1968-0223929-2.
- N. Kalton, A. Wilansky, Tauberian operators on Banach spaces, Proc. Amer. Math. Soc. 57 (1976), 251–255.
- N. Karapetiants, S. Samko, Equations with involutive operators, Birkhäuser, Boston, 2012.
- K. Latrach, A. Dehici, Fredholm, Semi-Fredholm perturbations, and essential spectra, J. Math. Anal. Appl. 259 (2001), 277–301. https://doi.org/10.1006/jmaa.2001.7501.
- V. Müller, Spectral theory of linear operators and spectral systems in Banach algebras, 2nd ed., Birkhäuser, Basel, 2007.
- M. Schechter, Principles of functional analysis, 2nd ed., American Mathematical Society, Providence, 2002.
- D.G. Tacon, Generalized semi-Fredholm transformations, J. Aust. Math. Soc. A. 34 (1983), 60–70. https://doi.org/10.1017/s1446788700019765.