New Characterizations of the Jeribi Essential Spectrum

Main Article Content

Belabbaci Chafika

Abstract

In this paper, we give several characterizations of the Jeribi essential spectrum of a bounded linear operator defined on a Banach space by using the notion of almost weakly compact operators. As a consequence, we prove the stability of the Jeribi essential spectrum under compact perturbations. Furthermore, some characterizations of the Jeribi essential spectra of 3×3 upper triangular block operator matrix are also given.

Article Details

References

  1. B. Abdelmoumen, S. Yengui, Perturbation theory, M-essential spectra of operator matrices, Filomat. 34 (2020) 1187-1196. https://doi.org/10.2298/fil2004187a.
  2. C. Belabbaci, The S-Jeribi essential spectrum, Ukr. Mat. Zhurn. 73 (2021), 308–313. https://doi.org/10.37863/umzh.v73i3.163.
  3. S. Charfi, A. Jeribi, I. Walha, Essential spectra, matrix operator and applications, Acta Appl. Math. 111 (2009), 319–337. https://doi.org/10.1007/s10440-009-9547-9.
  4. M. Damak, A. Jeribi, On the essential spectra of matrix operators and applications, Electron. J. Differ. Equ. 2007 (2007), 11.
  5. M. González, A. Martínez-Abejón, Tauberian operators, Birkhäuser, Basel, 2010.
  6. R.H. Herman, Generalizations of weakly compact operators, Trans. Amer. Math. Soc. 132 (1968), 377–386. https://doi.org/10.1090/s0002-9947-1968-0223929-2.
  7. N. Kalton, A. Wilansky, Tauberian operators on Banach spaces, Proc. Amer. Math. Soc. 57 (1976), 251–255.
  8. N. Karapetiants, S. Samko, Equations with involutive operators, Birkhäuser, Boston, 2012.
  9. K. Latrach, A. Dehici, Fredholm, Semi-Fredholm perturbations, and essential spectra, J. Math. Anal. Appl. 259 (2001), 277–301. https://doi.org/10.1006/jmaa.2001.7501.
  10. V. Müller, Spectral theory of linear operators and spectral systems in Banach algebras, 2nd ed., Birkhäuser, Basel, 2007.
  11. M. Schechter, Principles of functional analysis, 2nd ed., American Mathematical Society, Providence, 2002.
  12. D.G. Tacon, Generalized semi-Fredholm transformations, J. Aust. Math. Soc. A. 34 (1983), 60–70. https://doi.org/10.1017/s1446788700019765.