A Hoeffding-Azuma Type Inequality for Random Processes
Main Article Content
Abstract
The subject of this paper is a Hoeffding-Azuma type estimation for the difference between an adapted random process and its conditional expectation given a related filtration.
Article Details
References
- K.B. Athreya, S.N. Lahiri, Measure theory and probability theory, Springer New York, 2006. https://doi.org/10.1007/978-0-387-35434-7.
- V. Bentkus, On Hoeffding’s inequalities, Ann. Probab. 32 (2004), 1650–1673. https://doi.org/10.1214/009117904000000360.
- V. Bentkus, An extension of the Hoeffding inequality to unbounded random variables, Lith Math. J. 48 (2008), 137–157. https://doi.org/10.1007/s10986-008-9007-7.
- P.W. Glynn, D. Ormoneit, Hoeffding’s inequality for uniformly ergodic Markov chains, Stat. Probab. Lett. 56 (2002), 143–146. https://doi.org/10.1016/s0167-7152(01)00158-4.
- G.R. Grimmett, D.R. Stirzaker, Probability and random processes, Oxford University Press, Oxford, New York, 2004.
- W. Hoeffding, Probability inequalities for sums of bounded random variables, J. Amer. Stat. Assoc. 58 (1963), 13–30. https://doi.org/10.1080/01621459.1963.10500830.
- I. Pinelis, On the Bennett-Hoeffding inequality, Ann. Inst. H. Poinc. Probab. Stat. 50 (2014), 123–145. https://doi.org/10.1214/12-aihp495.
- M. Talagrand, The missing factor in Hoeffding’s inequalities, Ann. Inst. Henri Poinc. 31 (1995), 689–702.
- T. Tao, Topics in Random Matrix Theory, Graduate Studies in Mathematics, Vol. 132, American Mathematical Society, 2012.
- S.A. Van De Geer, On Hoeffding’s inequality for dependent random variables, in: H. Dehling, T. Mikosch, M. Sørensen (Eds.), Empirical Process Techniques for Dependent Data, Birkhäuser, Boston, 2002: pp. 161–169. https://doi.org/10.1007/978-1-4612-0099-4_4.