A Hoeffding-Azuma Type Inequality for Random Processes

Main Article Content

Mahir Hasanov


The subject of this paper is a Hoeffding-Azuma type estimation for the difference between an adapted random process and its conditional expectation given a related filtration.

Article Details


  1. K.B. Athreya, S.N. Lahiri, Measure theory and probability theory, Springer New York, 2006. https://doi.org/10.1007/978-0-387-35434-7.
  2. V. Bentkus, On Hoeffding’s inequalities, Ann. Probab. 32 (2004), 1650–1673. https://doi.org/10.1214/009117904000000360.
  3. V. Bentkus, An extension of the Hoeffding inequality to unbounded random variables, Lith Math. J. 48 (2008), 137–157. https://doi.org/10.1007/s10986-008-9007-7.
  4. P.W. Glynn, D. Ormoneit, Hoeffding’s inequality for uniformly ergodic Markov chains, Stat. Probab. Lett. 56 (2002), 143–146. https://doi.org/10.1016/s0167-7152(01)00158-4.
  5. G.R. Grimmett, D.R. Stirzaker, Probability and random processes, Oxford University Press, Oxford, New York, 2004.
  6. W. Hoeffding, Probability inequalities for sums of bounded random variables, J. Amer. Stat. Assoc. 58 (1963), 13–30. https://doi.org/10.1080/01621459.1963.10500830.
  7. I. Pinelis, On the Bennett-Hoeffding inequality, Ann. Inst. H. Poinc. Probab. Stat. 50 (2014), 123–145. https://doi.org/10.1214/12-aihp495.
  8. M. Talagrand, The missing factor in Hoeffding’s inequalities, Ann. Inst. Henri Poinc. 31 (1995), 689–702.
  9. T. Tao, Topics in Random Matrix Theory, Graduate Studies in Mathematics, Vol. 132, American Mathematical Society, 2012.
  10. S.A. Van De Geer, On Hoeffding’s inequality for dependent random variables, in: H. Dehling, T. Mikosch, M. Sørensen (Eds.), Empirical Process Techniques for Dependent Data, Birkhäuser, Boston, 2002: pp. 161–169. https://doi.org/10.1007/978-1-4612-0099-4_4.