On Crossed Product Rings Over p.q.-Baer and Quasi-Baer Rings
Main Article Content
Abstract
In this paper, we consider a ring R and a monoid M equipped with a twisting map f: M×M -> U(R) and an action map ω: M -> Aut(R). The main objective of our study is to investigate the conditions under which the crossed product structure R⋊M is p.q.-Baer and quasi-Baer rings, and how this property relates to the p.q.-Baer property of R and the existence of a generalized join in I(R) for M-indexed subsets, where I(R) denotes the set of ideals of R. Additionally, we prove a connection between R being a left p.q.-Baer ring and the CM-quasi-Armendariz property. Moreover, we prove that for any element φ2=φ, there exist an idempotent element e2=e such that φ = ce. We then prove that R is quasi-Baer if and only if the crossed product structure R⋊M is quasi-Baer. Finally, we present novel results regarding various constructions for crossed products.
Article Details
References
- I. Kaplansky, Rings of Operators, Benjamin, New York, (1968).
- W.E. Clark, Twisted Matrix Units Semigroup Algebras, Duke Math. J. 34 (1967), 417–423. https://doi.org/10.1215/s0012-7094-67-03446-1.
- G.F. Birkenmeier, J.Y. Kim, J.K. Park, Principally Quasi-Baer Rings, Commun. Algebra. 29 (2001), 639–660. https://doi.org/10.1081/agb-100001530.
- G.F. Birkenmeier, J.Y. Kim, J.K. Park, A Sheaf Representation of Quasi-Baer Rings, J. Pure Appl. Algebra. 146 (2000), 209–223. https://doi.org/10.1016/s0022-4049(99)00164-4.
- G.F. Birkenmeier, J.Y. Kim, J.K. Park, On quasi-Baer rings, in: D.V. Huynh, S.K. Jain, S.R. Lopez-Permouth (Eds.), Contemporary Mathematics, American Mathematical Society, Providence, Rhode Island, 2000: pp. 67–92. https://doi.org/10.1090/conm/259/04088.
- G.F. Birkenmeier, J.Y. Kim, J.K. Park, On Polynomial Extensions of Principally Quasi-Baer Rings, Kyungpook Math. J. 40 (2000), 247–253.
- E. Ali, The Reflexive Condition on Skew Monoid Rings, Eur. J. Pure Appl. Math. 16 (2023), 1878–1893.
- Z. Liu, a Note on Principally Quasi-Baer Rings, Commun. Algebra. 30 (2002), 3885–3890. https://doi.org/10.1081/agb-120005825.
- L. Zhao, Y. Zhou, Generalised Armendariz Properties of Crossed Product Type, Glasgow Math. J. 58 (2015), 313–323. https://doi.org/10.1017/s001708951500021x.
- E. Ali, Generalized Reflexive Structures Properties of Crossed Products Type, Eur. J. Pure Appl. Math. In Press.
- A.V. Kelarev, Ring Constructions and Applications, World Scientific, 2001. https://doi.org/10.1142/4807.
- D.S. Passman, The Algebraic Structure of Group Rings, John Wiley, Sons Ltd., New York, 1977.
- Y. Hirano, on Ordered Monoid Rings Over a Quasi-Baer Ring, Commun. Algebra. 29 (2001), 2089–2095. https://doi.org/10.1081/agb-100002171.
- A.R. Nasr-Isfahani, A. Moussavi, on Weakly Rigid Rings, Glasgow Math. J. 51 (2009), 425–440. https://doi.org/10.1017/s0017089509005084.
- E. Hashemi, A. Moussavi, Polynomial Extensions of Quasi-Baer Rings, Acta Math. Hung. 107 (2005), 207–224. https://doi.org/10.1007/s10474-005-0191-1.
- G.F. Birkenmeier, J.K. Park, Triangular Matrix Representations of Ring Extensions, J. Algebra. 265 (2003), 457– 477. https://doi.org/10.1016/s0021-8693(03)00155-8.
- Z.K. Liu, Quasi-Baer Rings of Generalized Power Series, Chinese Ann. Math. 23 (2002), 579–584.
- Z. Liu, J. Ahsan, PP-Rings of Generalized Power Series, Acta Math. Sinica. 16 (2000), 573–578. https://doi.org/10.1007/s1011400000884.
- Z.K. Liu, Principal Quasi-Baerness of Rings of Generalized Power Series, Northeast Math. J. 23 (2007), 283–292.
- R. Mazurek, Left Principally Quasi-Baer and Left APP-Rings of Skew Generalized Power Series, J. Algebra Appl. 14 (2014), 1550038. https://doi.org/10.1142/s0219498815500383.
- E. Ali, A. Elshokry, Some Properties of Quasi-Armendariz Rings and Their Generalization, Asia Pac. J. Math. 5 (2018), 14-26.
- L. Zhongkui, Z. Wenhui, Quasi-Armendariz Rings Relative to a Monoid, Commun. Algebra. 36 (2008), 928–947. https://doi.org/10.1080/00927870701776698.
- E. Ali, A. Elshokry, A Note on (S, ω)-Quasi-Armendariz Rings, Palestine J. Math. In Press.
- L. Zhongkui, Z. Renyu, a Generalization of pp-Rings and p.q.-Baer Rings, Glasgow Math. J. 48 (2006), 217–229. https://doi.org/10.1017/s0017089506003016.