A Graphical Representation of the Truncated Moment of the Solution of a Nonlinear SPDE

Main Article Content

Boubaker Smii, Dhaker Kroumi

Abstract

We consider a stochastic partial differential equation driven by a Lévy type noise (SPDE). Particular attention is given to the correlation function which measures the moments of the solution. Using the Feynman graph formalism, the solution of the SPDE as well as its truncated moments are given as a sum over specific graphs that are evaluated according to some rules. A remark on some applications will be given at the end of this work.

Article Details

References

  1. S. Albeverio, L. Di Persio, E. Mastrogiacomo, B. Smii, Explicit Invariant Measures for Infinite Dimensional Sde Driven by Lévy Noise With Dissipative Nonlinear Drift I, arXiv:1312.2398 (2013). https://doi.org/10.48550/ARXIV.1312.2398.
  2. S. Albeverio, L.D. Persio, E. Mastrogiacomo, B. Smii, A Class of Lévy Driven SDEs and their Explicit Invariant Measures, Potent. Anal. 45 (2016), 229–259. https://doi.org/10.1007/s11118-016-9544-3.
  3. S. Albeverio, L. Di Persio, E. Mastrogiacomo, Small Noise Asymptotic Expansions for Stochastic PDE’s, I. The Case of a Dissipative Polynomially Bounded Non Linearity, Tohoku Math. J. (2). 63 (2011), 877–898. https://doi.org/10.2748/tmj/1325886292.
  4. S. Albeverio, E. Mastrogiacomo, B. Smii, Small Noise Asymptotic Expansions for Stochastic PDE’s Driven by Dissipative Nonlinearity and Lévy Noise, Stoch. Proc. Appl. 123 (2013), 2084–2109. https://doi.org/10.1016/j.spa.2013.01.013.
  5. S. Albeverio, H. Gottschalk, J.L. Wu, Convoluted Generalized White Noise, Schwinger Functions and Their Analytic Continuation to Wightman Functions, Rev. Math. Phys. 08 (1996), 763–817. https://doi.org/10.1142/s0129055x96000287.
  6. S. Albeverio, B. Smii, Borel Summation of the Small Time Expansion of Some SDE’s Driven by Gaussian White Noise, Asymp. Anal. 114 (2019), 211–223. https://doi.org/10.3233/asy-191525.
  7. S. Albeverio, B. Smii, Asymptotic Expansions for SDE’s With Small Multiplicative Noise, Stoch. Proc. Appl. 125 (2015), 1009–1031. https://doi.org/10.1016/j.spa.2014.09.009.
  8. S. Albeverio, J.L. Wu, T.S. Zhang, Parabolic SPDEs Driven by Poisson White Noise, Stoch. Proc. Appl. 74 (1998), 21–36. https://doi.org/10.1016/s0304-4149(97)00112-9.
  9. M.T. Barlow, Random Walks and Heat Kernels on Graphs, Cambridge University Press, Cambridge, 2017. https://doi.org/10.1017/978-1-107-41569-0.
  10. J. Besag, Spatial Interaction and the Statistical Analysis of Lattice Systems, J. R. Stat. Soc.: Ser. B (Methodol.) 36 (1974), 192–225. https://doi.org/10.1111/j.2517-6161.1974.tb00999.x.
  11. N.G. de Bruijn, Asymptotic Methods in Analysis, North-Holland, Amsterdam, 1958.
  12. M.I. Freidlin, Markov Processes and Differential Equations, Asymptotic Problems, Birkhäuser, Basel, (1996).
  13. R. FitzHugh, Impulses and Physiological States in Theoretical Models of Nerve Membrane, Biophys. J. 1 (1961), 445–466. https://doi.org/10.1016/s0006-3495(61)86902-6.
  14. S. Geman, D. Geman, Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images, IEEE Trans. Pattern Anal. Mach. Intell. PAMI-6 (1984), 721–741. https://doi.org/10.1109/TPAMI.1984.4767596.
  15. I.I. Gihman, A.V. Skorohod, Stochastic Differential Equations, Springer-Verlag, Berlin-Heidelberg, 1972.
  16. H. Gottschalk, B. Smii, H. Thaler, The Feynman Graph Representation of Convolution Semigroups and Its Applications to Lévy Statistics, Bernoulli, 14 (2008), 322–351. https://www.jstor.org/stable/20680092.
  17. H. Gottschalk, B. Smii, How to Determine the Law of the Solution to a Stochastic Partial Differential Equation Driven by a Lévy Space-Time Noise?, J. Math. Phys. 48 (2007), 043303. https://doi.org/10.1063/1.2712916.
  18. P. Hartman, A. Wintner, On the infinitesimal generators of integral convolutions, Amer. J. Math. 64 (1942), 273–298. https://www.jstor.org/stable/2371683.
  19. M. Kardar, G. Parisi, Y.C. Zhang, Dynamic Scaling of Growing Interfaces, Phys. Rev. Lett. 56 (1986), 889–892. https://doi.org/10.1103/physrevlett.56.889.
  20. B. Øksendal, Stochastic Differential Equations, Springer, Berlin, Heidelberg, 2010. https://doi.org/10.1007/978-3-642-14394-6.
  21. K.I. Sato, Lévy Processes and Infinitely Divisible Distributions, Cambridge University Press, Cambridge, 1999.
  22. JP. Serre, Trees, Springer, Berlin, 1980.
  23. L.S. Schulman, Techniques and Applications of Path Integrations, John Wiley and Sons, New York, 1981.
  24. T. Shiga, A Recurrence Criterion for Markov Processes of Ornstein-Uhlenbeck Type, Prob. Theory Related Fields. 85 (1990), 425–447. https://doi.org/10.1007/bf01203163.
  25. B. Smii, Asymptotic expansion of the transition density of the semigroup associated to a SDE driven by Lévy noise, Asympt. Anal. 124 (2021), 51–68. https://doi.org/10.3233/asy-201640.
  26. B. Smii, Markov Random Fields Model and Applications to Image Processing, AIMS Math. 7 (2022), 4459–4471. https://doi.org/10.3934/math.2022248.
  27. R. Song, Two-sided Estimates on the Density of the Feynman-Kac Semigroups of Stable-like Processes, Electron. J. Probab. 11 (2006), 146–161. https://doi.org/10.1214/ejp.v11-308.