Generalized Hyers-Ulam Stability of Additive Functional Inequality in Modular Spaces and β-Homogeneous Banach Spaces

Main Article Content

Abderrahman Baza, Mohamed Rossafi


In this work, we investigate the generalised Hyers-Ulam stability of additive functional inequality in modular spaces with ∆2-conditions and in β-homogeneous Banach spaces.

Article Details


  1. I. Amemiya, On the Representation of Complemented Modular Lattices, J. Math. Soc. Japan. 9 (1957), 263–279.
  2. M. Brešar, Jordan Mappings of Semiprime Rings, J. Algebra. 127 (1989), 218–228.
  3. D.H. Hyers, On the Stability of the Linear Functional Equation, Proc. Natl. Acad. Sci. U.S.A. 27 (1941), 222–224.
  4. J. Kim, G.A. Anastassiou, C. Park, Additive ρ-Functional Inequalities in Fuzzy Normed Spaces, J. Comput. Anal. Appl. 21 (2016), 1115–1126.
  5. M. Krbec, Modular Interpolation Spaces I, Z. Anal. Anwend. 1 (1982), 25–40.
  6. W.A.J. Luxemburg, Banach Function Spaces, Phd Thesis, Delft University of Technology, Delft, The Netherlands, (1959).
  7. L. Maligranda, Orlicz Spaces and Interpolation, In: Seminars in Mathematics, Departamento de Matemática, Universidade Estadual de Campinas, Brasil, (1989).
  8. B. Mazur, Modular curves and the eisenstein ideal, Publ. Math. L’Inst. Hautes Sci. 47 (1977), 33–186.
  9. J. Musielak, Orlicz Spaces and Modular Spaces, Springer, Berlin, Heidelberg, 1983.
  10. H. Nakano, Modulared Semi-Ordered Linear Spaces, Maruzen, Tokyo, (1950).
  11. W. Orlicz, Collected Papers. I, II, PWN-Polish Scientific Publishers, Warszawa, (1988).
  12. S.M. Ulam, Problems in Modern Mathematics, Wiley, New York, (1964).
  13. C. Park, Additive ρ-Functional Inequalities in β-Homogeneous Normed Spaces, Filomat, 30 (2016), 1651–1658.
  14. P. Turpin, Fubini Inequalities and Bounded Multiplier Property in Generalized Modular Spaces, Comment. Math. 1 (1978), 331–353.
  15. S. Yamamuro, On Conjugate Spaces of Nakano Spaces, Trans. Amer. Math. 5oc. 90 (1959), 291–311.