Results on Katugampola Fractional Derivatives and Integrals

Main Article Content

Iqbal H. Jebril, Mohammed S. El-Khatib, Ahmad A. Abubaker, Suha B. Al-Shaikh, Iqbal M. Batiha

Abstract

In this paper, we introduce and develop a new definitions for Katugampola derivative and Katugampola integral. In particular, we defined a (left) fractional derivative starting from a of a function f of order α∈(m-1, m] and a (right) fractional derivative terminating at b, where m ∈ N. Then, we give some proprieties in relation to these operators such as linearity, product rule, quotient rule, power rule, chain rule, and vanishing derivatives for constant functions.

Article Details

References

  1. A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, 1st ed, Elsevier, Amsterdam, 2006.
  2. S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Yverdon, 1993.
  3. I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
  4. T. Hamadneh, A. Hioual, O. Alsayyed, et al. Local Stability, Global Stability, and Simulations in a Fractional Discrete Glycolysis Reaction–Diffusion Model, Fractal Fract. 7 (2023), 587. https://doi.org/10.3390/fractalfract7080587.
  5. I.M. Batiha, O. Talafha, O.Y. Ababneh, et al. Handling a Commensurate, Incommensurate, and Singular FractionalOrder Linear Time-Invariant System, Axioms. 12 (2023), 771. https://doi.org/10.3390/axioms12080771.
  6. R.B. Albadarneh, A. Abbes, A. Ouannas, et al. On Chaos in the Fractional-Order Discrete-Time Macroeconomic Systems, AIP Conf. Proc. 2849 (2023), 030014. https://doi.org/10.1063/5.0162686.
  7. I.M. Batiha, A.A. Abubaker, I.H. Jebril, et al. A Mathematical Study on a Fractional-Order SEIR Mpox Model: Analysis and Vaccination Influence, Algorithms. 16 (2023), 418. https://doi.org/10.3390/a16090418.
  8. S.B. Ahmed, A. Ouannas, M.A. Horani, et al. Chaotic Attractors in Quadratic Discrete Tinkerbell System With Non-Commensurate Fractional Variable-Orders: Complexity, Chaos and Entropy, in: 2023 International Conference on Fractional Differentiation and Its Applications (ICFDA), IEEE, Ajman, United Arab Emirates, 2023: pp. 1–5. https://doi.org/10.1109/ICFDA58234.2023.10153217.
  9. R.C. Karoun, A. Ouannas, M.A. Horani, et al. Chaos in The Fractional Variable Order Discrete-Time Neural Networks*, in: 2023 International Conference on Fractional Differentiation and Its Applications (ICFDA), IEEE, Ajman, United Arab Emirates, 2023: pp. 1–5. https://doi.org/10.1109/ICFDA58234.2023.10153184.
  10. R.B. Albadarneh, A.M. Adawi, S. Al-Sa’di, et al. A Pro Rata Definition of the Fractional-Order Derivative, in: D. Zeidan, J.C. Cortés, A. Burqan, A. Qazza, J. Merker, G. Gharib (Eds.), Mathematics and Computation, Springer Nature Singapore, Singapore, 2023: pp. 65–79. https://doi.org/10.1007/978-981-99-0447-1_6.
  11. R.B. Albadarneh, I.M. Batiha, A. Adwai, et al. Numerical Approach of Riemann-Liouville Fractional Derivative Operator, Int. J. Electric. Comput. Eng. 11 (2021), 5367–5378. https://doi.org/10.11591/ijece.v11i6.pp5367-5378.
  12. I.M. Batiha, J. Oudetallah, A. Ouannas, et al. Tuning the Fractional-Order PID-Controller for Blood Glucose Level of Diabetic Patients, Int. J. Adv. Soft Comput. Appl. 13 (2021), 1–10.
  13. R.B. Albadarneh, I. Batiha, A.K. Alomari, et al. Numerical Approach for Approximating the Caputo Fractional-Order Derivative Operator, AIMS Math. 6 (2021), 12743–12756. https://doi.org/10.3934/math.2021735.
  14. M. Caputo, Linear Models of Dissipation whose Q is almost Frequency Independent–II, Geophys. J. Int. 13 (1967), 529–539. https://doi.org/10.1111/j.1365-246x.1967.tb02303.x.
  15. R. Khalil, M. Al Horani, A. Yousef, et al. A New Definition of Fractional Derivative, J. Comput. Appl. Math. 264 (2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002.
  16. U.N. Katugampola, A New Fractional Derivative with Classical Properties, (2014). https://doi.org/10.48550/ARXIV.1410.6535.
  17. T.O. Salim, A.A.K. Abu Hany, M.S. El-Khatib, On Katugampola Fourier Transform, J. Math. 2019 (2019), 5942139. https://doi.org/10.1155/2019/5942139.
  18. M.S. El-Khatib, T.O. Salim, A.A.K. Abu Hany, On Katugampola Laplace Transform, Gen. Lett. Math. 9 (2020), 93-100. https://doi.org/10.31559/glm2020.9.2.5.
  19. M.S. El-Khatib, T.O. Salim and A.A.K. Abu Hany, Analytical Solution of Rayleigh-Stokes Problem With Katugampola Fractional Derivative, J. Fract. Calc. Appl. 12 (2021), 1-11.
  20. T. Abdeljawad, on Conformable Fractional Calculus, J. Comput. Appl. Math. 279 (2015), 57–66. https://doi.org/10.1016/j.cam.2014.10.016.
  21. I.M. Batiha, N. Djenina, A. Ouannas, A Stabilization of Linear Incommensurate Fractional-Order Difference Systems, AIP Conf. Proc. 2849 (2023), 030013. https://doi.org/10.1063/5.0164866.
  22. I.M. Batiha, S. Alshorm, A. Zraiqat, et al. Numerical Solution for Incommensurate System of Fractional Order Differential Equations, in: 2023 International Conference on Information Technology (ICIT), IEEE, Amman, Jordan, 2023: pp. 652–656. https://doi.org/10.1109/ICIT58056.2023.10225807.
  23. S. Alshorm, I.M. Batiha, I. Jebril, et al. Handling Systems of Incommensurate Fractional Order Equations Using Improved Fractional Euler Method, in: 2023 International Conference on Information Technology (ICIT), IEEE, Amman, Jordan, 2023: pp. 657–660. https://doi.org/10.1109/ICIT58056.2023.10226115.
  24. I.M. Batiha, A.A. Abubaker, I.H. Jebril, et al. New Algorithms for Dealing with Fractional Initial Value Problems, Axioms. 12 (2023), 488. https://doi.org/10.3390/axioms12050488.
  25. I.M. Batiha, N. Djenina, A. Ouannas, et al. Control of Chaos in Incommensurate Fractional Order Discrete System, in: 2023 International Conference on Fractional Differentiation and Its Applications (ICFDA), IEEE, Ajman, United Arab Emirates, 2023: pp. 1–4. https://doi.org/10.1109/ICFDA58234.2023.10153180.