Results on Katugampola Fractional Derivatives and Integrals
Main Article Content
Abstract
In this paper, we introduce and develop a new definitions for Katugampola derivative and Katugampola integral. In particular, we defined a (left) fractional derivative starting from a of a function f of order α∈(m-1, m] and a (right) fractional derivative terminating at b, where m ∈ N. Then, we give some proprieties in relation to these operators such as linearity, product rule, quotient rule, power rule, chain rule, and vanishing derivatives for constant functions.
Article Details
References
- A.A. Kilbas, H.M. Srivastava, J.J. Trujillo, Theory and Applications of Fractional Differential Equations, 1st ed, Elsevier, Amsterdam, 2006.
- S.G. Samko, A.A. Kilbas, O.I. Marichev, Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach, Yverdon, 1993.
- I. Podlubny, Fractional Differential Equations, Academic Press, San Diego, 1999.
- T. Hamadneh, A. Hioual, O. Alsayyed, et al. Local Stability, Global Stability, and Simulations in a Fractional Discrete Glycolysis Reaction–Diffusion Model, Fractal Fract. 7 (2023), 587. https://doi.org/10.3390/fractalfract7080587.
- I.M. Batiha, O. Talafha, O.Y. Ababneh, et al. Handling a Commensurate, Incommensurate, and Singular FractionalOrder Linear Time-Invariant System, Axioms. 12 (2023), 771. https://doi.org/10.3390/axioms12080771.
- R.B. Albadarneh, A. Abbes, A. Ouannas, et al. On Chaos in the Fractional-Order Discrete-Time Macroeconomic Systems, AIP Conf. Proc. 2849 (2023), 030014. https://doi.org/10.1063/5.0162686.
- I.M. Batiha, A.A. Abubaker, I.H. Jebril, et al. A Mathematical Study on a Fractional-Order SEIR Mpox Model: Analysis and Vaccination Influence, Algorithms. 16 (2023), 418. https://doi.org/10.3390/a16090418.
- S.B. Ahmed, A. Ouannas, M.A. Horani, et al. Chaotic Attractors in Quadratic Discrete Tinkerbell System With Non-Commensurate Fractional Variable-Orders: Complexity, Chaos and Entropy, in: 2023 International Conference on Fractional Differentiation and Its Applications (ICFDA), IEEE, Ajman, United Arab Emirates, 2023: pp. 1–5. https://doi.org/10.1109/ICFDA58234.2023.10153217.
- R.C. Karoun, A. Ouannas, M.A. Horani, et al. Chaos in The Fractional Variable Order Discrete-Time Neural Networks*, in: 2023 International Conference on Fractional Differentiation and Its Applications (ICFDA), IEEE, Ajman, United Arab Emirates, 2023: pp. 1–5. https://doi.org/10.1109/ICFDA58234.2023.10153184.
- R.B. Albadarneh, A.M. Adawi, S. Al-Sa’di, et al. A Pro Rata Definition of the Fractional-Order Derivative, in: D. Zeidan, J.C. Cortés, A. Burqan, A. Qazza, J. Merker, G. Gharib (Eds.), Mathematics and Computation, Springer Nature Singapore, Singapore, 2023: pp. 65–79. https://doi.org/10.1007/978-981-99-0447-1_6.
- R.B. Albadarneh, I.M. Batiha, A. Adwai, et al. Numerical Approach of Riemann-Liouville Fractional Derivative Operator, Int. J. Electric. Comput. Eng. 11 (2021), 5367–5378. https://doi.org/10.11591/ijece.v11i6.pp5367-5378.
- I.M. Batiha, J. Oudetallah, A. Ouannas, et al. Tuning the Fractional-Order PID-Controller for Blood Glucose Level of Diabetic Patients, Int. J. Adv. Soft Comput. Appl. 13 (2021), 1–10.
- R.B. Albadarneh, I. Batiha, A.K. Alomari, et al. Numerical Approach for Approximating the Caputo Fractional-Order Derivative Operator, AIMS Math. 6 (2021), 12743–12756. https://doi.org/10.3934/math.2021735.
- M. Caputo, Linear Models of Dissipation whose Q is almost Frequency Independent–II, Geophys. J. Int. 13 (1967), 529–539. https://doi.org/10.1111/j.1365-246x.1967.tb02303.x.
- R. Khalil, M. Al Horani, A. Yousef, et al. A New Definition of Fractional Derivative, J. Comput. Appl. Math. 264 (2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002.
- U.N. Katugampola, A New Fractional Derivative with Classical Properties, (2014). https://doi.org/10.48550/ARXIV.1410.6535.
- T.O. Salim, A.A.K. Abu Hany, M.S. El-Khatib, On Katugampola Fourier Transform, J. Math. 2019 (2019), 5942139. https://doi.org/10.1155/2019/5942139.
- M.S. El-Khatib, T.O. Salim, A.A.K. Abu Hany, On Katugampola Laplace Transform, Gen. Lett. Math. 9 (2020), 93-100. https://doi.org/10.31559/glm2020.9.2.5.
- M.S. El-Khatib, T.O. Salim and A.A.K. Abu Hany, Analytical Solution of Rayleigh-Stokes Problem With Katugampola Fractional Derivative, J. Fract. Calc. Appl. 12 (2021), 1-11.
- T. Abdeljawad, on Conformable Fractional Calculus, J. Comput. Appl. Math. 279 (2015), 57–66. https://doi.org/10.1016/j.cam.2014.10.016.
- I.M. Batiha, N. Djenina, A. Ouannas, A Stabilization of Linear Incommensurate Fractional-Order Difference Systems, AIP Conf. Proc. 2849 (2023), 030013. https://doi.org/10.1063/5.0164866.
- I.M. Batiha, S. Alshorm, A. Zraiqat, et al. Numerical Solution for Incommensurate System of Fractional Order Differential Equations, in: 2023 International Conference on Information Technology (ICIT), IEEE, Amman, Jordan, 2023: pp. 652–656. https://doi.org/10.1109/ICIT58056.2023.10225807.
- S. Alshorm, I.M. Batiha, I. Jebril, et al. Handling Systems of Incommensurate Fractional Order Equations Using Improved Fractional Euler Method, in: 2023 International Conference on Information Technology (ICIT), IEEE, Amman, Jordan, 2023: pp. 657–660. https://doi.org/10.1109/ICIT58056.2023.10226115.
- I.M. Batiha, A.A. Abubaker, I.H. Jebril, et al. New Algorithms for Dealing with Fractional Initial Value Problems, Axioms. 12 (2023), 488. https://doi.org/10.3390/axioms12050488.
- I.M. Batiha, N. Djenina, A. Ouannas, et al. Control of Chaos in Incommensurate Fractional Order Discrete System, in: 2023 International Conference on Fractional Differentiation and Its Applications (ICFDA), IEEE, Ajman, United Arab Emirates, 2023: pp. 1–4. https://doi.org/10.1109/ICFDA58234.2023.10153180.