Associative Types in a Semi-Brouwerian Almost Distributive Lattice With Respect to the Binary Operation ρ

Main Article Content

V.V.V.S.S.P.S. Srikanth, S. Ramesh, M.V. Ratnamani, Ravikumar Bandaru, Aiyared Iampan

Abstract

In this paper, we exhibit a detailed analysis of non-associativity and non-commutativity of the binary operation ρ in a semi-Brouwerian almost distributive lattice and characterize the algebraic structure in terms of the different associative types.

Article Details

References

  1. G. Birkhoff, Lattice Theory, Third Edition, Colloquium Publications, Vol. 25, American Mathematical Society, Providence, (1967).
  2. G. Boole, An Investigation Into the Laws of Thought, London, 1854 (Reprinted by Open Court Publishing Co.), Chesla, (1940).
  3. S. Burris, H.P. Sankappanavar, A First Course in Universal Algebra, Spinger-Verlag, New York, Heidelberg, Berlin, (1981).
  4. J.M. Cornejo, H.P. Sankappanavar, Semi-Heyting Algebras and Identities of Associative Type, Bull. Sect. Logic. 48 (2019), 177–198. https://doi.org/10.18778/0138-0680.48.2.03.
  5. G.C. Rao, B. Assaye, M.V. Ratnamani, Heyting Almost Distributive Lattices, Int. J. Comput. Cognit. 8 (2010), 89–93.
  6. G.C. Rao, M.V. Ratnamani, K.P. Shum, B. Assaye, Semi Heyting Almost Distributive Lattices, Lobachevskii J. Math. 36 (2015), 184–189. https://doi.org/10.1134/s1995080215020158.
  7. G.C. Rao, M.V. Ratnamani, K.P. Shum, Almost Semi Heyting Algebra, Southeast Asian Bull. Math. 42 (2018), 95–110.
  8. H.P. Sankappanavar, Semi-Heyting Algebras: An Abstraction From Heyting Algebras, In: Actas del IX Congreso Antonio Monteiro, Universidad Nacional del Sur, Bahia Blanca, Argentina, 2008, pp. 33–66.
  9. V.V.V.S.S.P.S. Srikanth, S. Ramesh, M.V. Ratnamani, Semi-Brouwerian Almost Distributive Lattices, Southeast Asian Bull. Math. 45 (2022), 849–860.
  10. M.H. Stone, The Theory of Representation for Boolean Algebras, Trans. Amer. Math. Soc. 40 (1936), 37–111. https://doi.org/10.2307/1989664.
  11. M.H. Stone, Topological Representation of Distributive Lattices and Brouwerian Logics, Cas. Mat. Fys. 67 (1937), 1–25. http://eudml.org/doc/27235.
  12. U.M. Swamy, G.C. Rao, Almost Distributive Lattices, J. Aust. Math. Soc. A. 31 (1981), 77–91. https://doi.org/10.1017/s1446788700018498.
  13. U.M. Swamy, G.C. Rao, G.N. Rao, Pseudo-Complementation on Almost Distributive Lattices, Southeast Asian Bull. Math. 24 (2000), 95–104.
  14. U.M. Swamy, G.C. Rao, G.N. Rao, Stone Almost Distributive Lattices, Southeast Asian Bull. Math. 27 (2003), 513–526.
  15. U.M. Swamy, S. Ramesh, Birkhoff Centre of an Almost Distributive Lattice, Int. J. Algebra, 3 (2009), 539–546.