Associative Types in a Semi-Brouwerian Almost Distributive Lattice With Respect to the Binary Operation ρ
Main Article Content
Abstract
In this paper, we exhibit a detailed analysis of non-associativity and non-commutativity of the binary operation ρ in a semi-Brouwerian almost distributive lattice and characterize the algebraic structure in terms of the different associative types.
Article Details
References
- G. Birkhoff, Lattice Theory, Third Edition, Colloquium Publications, Vol. 25, American Mathematical Society, Providence, (1967).
- G. Boole, An Investigation Into the Laws of Thought, London, 1854 (Reprinted by Open Court Publishing Co.), Chesla, (1940).
- S. Burris, H.P. Sankappanavar, A First Course in Universal Algebra, Spinger-Verlag, New York, Heidelberg, Berlin, (1981).
- J.M. Cornejo, H.P. Sankappanavar, Semi-Heyting Algebras and Identities of Associative Type, Bull. Sect. Logic. 48 (2019), 177–198. https://doi.org/10.18778/0138-0680.48.2.03.
- G.C. Rao, B. Assaye, M.V. Ratnamani, Heyting Almost Distributive Lattices, Int. J. Comput. Cognit. 8 (2010), 89–93.
- G.C. Rao, M.V. Ratnamani, K.P. Shum, B. Assaye, Semi Heyting Almost Distributive Lattices, Lobachevskii J. Math. 36 (2015), 184–189. https://doi.org/10.1134/s1995080215020158.
- G.C. Rao, M.V. Ratnamani, K.P. Shum, Almost Semi Heyting Algebra, Southeast Asian Bull. Math. 42 (2018), 95–110.
- H.P. Sankappanavar, Semi-Heyting Algebras: An Abstraction From Heyting Algebras, In: Actas del IX Congreso Antonio Monteiro, Universidad Nacional del Sur, Bahia Blanca, Argentina, 2008, pp. 33–66.
- V.V.V.S.S.P.S. Srikanth, S. Ramesh, M.V. Ratnamani, Semi-Brouwerian Almost Distributive Lattices, Southeast Asian Bull. Math. 45 (2022), 849–860.
- M.H. Stone, The Theory of Representation for Boolean Algebras, Trans. Amer. Math. Soc. 40 (1936), 37–111. https://doi.org/10.2307/1989664.
- M.H. Stone, Topological Representation of Distributive Lattices and Brouwerian Logics, Cas. Mat. Fys. 67 (1937), 1–25. http://eudml.org/doc/27235.
- U.M. Swamy, G.C. Rao, Almost Distributive Lattices, J. Aust. Math. Soc. A. 31 (1981), 77–91. https://doi.org/10.1017/s1446788700018498.
- U.M. Swamy, G.C. Rao, G.N. Rao, Pseudo-Complementation on Almost Distributive Lattices, Southeast Asian Bull. Math. 24 (2000), 95–104.
- U.M. Swamy, G.C. Rao, G.N. Rao, Stone Almost Distributive Lattices, Southeast Asian Bull. Math. 27 (2003), 513–526.
- U.M. Swamy, S. Ramesh, Birkhoff Centre of an Almost Distributive Lattice, Int. J. Algebra, 3 (2009), 539–546.