A Three-Step Iterative Scheme Based on Green's Function for the Solution of Boundary Value Problems
Main Article Content
Abstract
In this manuscript, we suggest a three-step iterative scheme for finding approximate numerical solutions to boundary value problems (BVPs) in a Banach space setting. The underlying strategy of the scheme is based on embedding Green’s function into the three-step M-iterative scheme, which we will call in the paper M-Green’s iterative scheme. We assume certain possible mild conditions to prove the convergence and stability results of the suggested scheme. We also prove numerically that our M-Green iterative scheme is more effective than the corresponding Mann-Green and Khan-Green iterative schemes. Our results improve and extend some recent results in the literature of Green’s function based iteration schemes.
Article Details
References
- S. Banach, Sur les Opérations dans les Ensembles Abstraits et Leur Application aux Équations Intégrales, Fund. Math. 3 (1922), 133–181.
- F.E. Browder, Nonexpansive Nonlinear Operators in a Banach Space, Proc. Natl. Acad. Sci. U.S.A. 54 (1965), 1041–1044. https://doi.org/10.1073/pnas.54.4.1041.
- P. Cholamjiak, D. Van Hieu, Y.J. Cho, Relaxed Forward-Backward Splitting Methods for Solving Variational Inclusions and Applications, J. Sci. Comput. 88 (2021), 85. https://doi.org/10.1007/s10915-021-01608-7.
- A. Sahin, Some New Results of M−Iteration Process in Hyperbolic Spaces, Carpathian J. Math. 35 (2019), 221– 232.
- A. Sahin, Some Results of the Picard-Krasnoselskii Hybrid Iterative Process, Filomat. 33 (2019), 359–365. https://doi.org/10.2298/fil1902359s.
- N.K. Karaca, I. Yildirim, Approximating Fixed Points of Nonexpansive Mappings by a Faster Iteration Process, J. Adv. Math. Stud. 8 (2015), 257–264.
- S.H. Khan, I. Yildirim, Fixed Points of Multivalued Nonexpansive Mappings in Banach Spaces, Fixed Point Theory Appl. 2012 (2012), 73. https://doi.org/10.1186/1687-1812-2012-73.
- H.A. Hammad, H. ur Rehman, M. De la Sen, Shrinking Projection Methods for Accelerating Relaxed Inertial TsengType Algorithm with Applications, Math. Probl. Eng. 2020 (2020), 7487383. https://doi.org/10.1155/2020/7487383.
- H.A. Hammad, W. Cholamjiak, D. Yambangwai, H. Dutta, A Modified Shrinking Projection Methods for Numerical Reckoning Fixed Points of G-Nonexpansive Mappings in Hilbert Spaces With Graphs, Miskolc Math. Notes. 20 (2019), 941–956. https://doi.org/10.18514/mmn.2019.2954.
- T.M. Tuyen, H.A. Hammad, Effect of Shrinking Projection and CQ-Methods on Two Inertial Forward–backward Algorithms for Solving Variational Inclusion Problems, Rend. Circ. Mat. Palermo, II. Ser. 70 (2021), 1669–1683. https://doi.org/10.1007/s12215-020-00581-8.
- W. Chaolamjiak, D. Yambangwai, H.A. Hammad, Modified Hybrid Projection Methods with SP Iterations for Quasi-Nonexpansive Multivalued Mappings in Hilbert Spaces, Bull. Iran. Math. Soc. 47 (2020), 1399–1422. https://doi.org/10.1007/s41980-020-00448-9.
- H.A. Hammad, H. ur Rehman, M. De la Sen, A New Four-Step Iterative Procedure for Approximating Fixed Points with Application to 2D Volterra Integral Equations, Mathematics. 10 (2022), 4257. https://doi.org/10.3390/math10224257.
- E.M. Picard, Mémoire sur la Théorie des Équations aux Dérivées Partielles et la Méthode des Approximations Successives, J. Math. Pure Appl. 6 (1890), 145–210.
- W.R. Mann, Mean Value Methods in Iteration, Proc. Amer. Math. Soc. 4 (1953), 506–510.
- S. Ishikawa, Fixed Points by a New Iteration Method, Proc. Amer. Math. Soc. 44 (1974), 147–150.
- S.H. Khan, A Picard-Mann Hybrid Iterative Process, Fixed Point Theory Appl. 2013 (2013), 69. https://doi.org/10.1186/1687-1812-2013-69.
- R. Glowinski, P.L. Tallec, Augmented Lagrangian and Operator-Splitting Methods in Nonlinear Mechanic, SIAM, Philadelphia, (1989).
- S. Haubruge, V.H. Nguyen, J.J. Strodiot, Convergence Analysis and Applications of the Glowinski–Le Tallec Splitting Method for Finding a Zero of the Sum of Two Maximal Monotone Operators, J. Optim. Theory Appl. 97 (1998), 645–673. https://doi.org/10.1023/a:1022646327085.
- K. Ullah, M. Arshad, Numerical Reckoning Fixed Points for Suzuki’s Generalized Nonexpansive Mappings via New Iteration Process, Filomat. 32 (2018), 187–196. https://doi.org/10.2298/fil1801187u.
- S.A. Khuri, A. Sayfy, Variational Iteration Method: Green’s Functions and Fixed Point Iterations Perspective, Appl. Math. Lett. 32 (2014), 28–34. https://doi.org/10.1016/j.aml.2014.01.006.
- S.A. Khuri, I. Louhichi, A Novel Ishikawa-Green’s Fixed Point Scheme for the Solution of BVPs, Appl. Math. Lett. 82 (2018), 50–57. https://doi.org/10.1016/j.aml.2018.02.016.
- F. Ali, J. Ali, I. Uddin, A Novel Approach for the Solution of Bvps via Green’s Function and Fixed Point Iterative Method, J. Appl. Math. Comput. 66 (2020), 167–181. https://doi.org/10.1007/s12190-020-01431-7.
- R. Stephen, V. Bernfeld, V. Lakshmikantham, An Introduction to Nonlinear Boundary Value Problems, Academic Press, New York, (1974).
- J. Mawhin, Functional Analysis and Boundary Value Problems, Studies in Ordinary Differential Equations, J.K. Hale, ed., Math. Assoc. Amer. Wash., DC, (1977).
- L.H. Erbe, Existence of Solutions to Boundary Value Problems for Second Order Differential Equations, Nonlinear Anal.: Theory Meth. Appl. 6 (1982), 1155–1162. https://doi.org/10.1016/0362-546x(82)90027-x.
- M.O. Osilike, Stability of the Mann and Ishikawa Iteration Procedures for Φ-Strong Pseudocontractions and Nonlinear Equations of the φ-Strongly Accretive Type, J. Math. Anal. Appl. 227 (1998), 319–334. https://doi.org/10.1006/jmaa.1998.6075.
- H.A. Hammad, M. Zayed, Solving Systems of Coupled Nonlinear Atangana–baleanu–Type Fractional Differential Equations, Bound Value Probl. 2022 (2022), 101. https://doi.org/10.1186/s13661-022-01684-0.
- Humaira, H.A. Hammad, M. Sarwar, M. De la Sen, Existence Theorem for a Unique Solution to a Coupled System of Impulsive Fractional Differential Equations in Complex-Valued Fuzzy Metric Spaces, Adv. Differ. Equ. 2021 (2021), 242. https://doi.org/10.1186/s13662-021-03401-0.
- H.A. Hammad, M. De la Sen, Stability and Controllability Study for Mixed Integral Fractional Delay Dynamic Systems Endowed with Impulsive Effects on Time Scales, Fractal Fract. 7 (2023), 92. https://doi.org/10.3390/fractalfract7010092.
- H.A. Hammad, M. De la Sen, H. Aydi, Generalized Dynamic Process for an Extended Multi-Valued F -Contraction in Metric-Like Spaces With Applications, Alexandria Eng. J. 59 (2020), 3817–3825. https://doi.org/10.1016/j.aej.2020.06.037.
- H.A. Hammad, H. Aydi, H. Işik, M. De la Sen, Existence and Stability Results for a Coupled System of Impulsive Fractional Differential Equations With Hadamard Fractional Derivatives, AIMS Math. 8 (2023), 6913–6941. https://doi.org/10.3934/math.2023350.
- M. Urabe, Convergence of Numerical Iteration in Solution of Equations, J. Sci. Hiroshima Univ. Ser. A. 19 (1956), 479–489.
- A.M. Harder, T.L. Hicks, Stability Results for Fixed Point Iteration Procedures, Math. Japon. 33 (1988), 693–706.
- T. Cardinali, P. Rubbioni, A Generalization of the Caristi Fixed Point Theorem in Metric Spaces, Fixed Point Theory. 11 (2010), 3–10.
- I. Timis, On the weak stability of Picard iteration for some contractive type mappings, Ann. Univ. Craiova-Math. Comput. Sci. Ser. 37 (2010), 106–114.