Cubic Pythagorean Hesitant Fuzzy Linear Spaces and Its Relevance in Multi Criteria Decision Making

Main Article Content

Gundeti Soujanya, P.R. Kavyasree, B. Surender Reddy

Abstract

Pythagorean fuzzy sets and interval valued Pythagorean fuzzy sets have an important role in decision making techniques. Pythagorean hesitant fuzzy sets are time and again used in dealing with uncertain and vague data. The motive of this paper is to introduce the notion cubic Pythagorean hesitant fuzzy linear spaces. We also present the notion of P(R)-intersection, P(R)-union of cubic Pythagorean hesitant fuzzy linear spaces with examples. Secondly, a series of operators like cubic Pythagorean hesitant fuzzy weighted averaging aggregation operators, cubic Pythagorean hesitant fuzzy order weighted averaging aggregation operators and cubic Pythagorean hesitant fuzzy hybrid order weighted averaging aggregation operators are developed. Then, these aggregation operators are further extended to cubic Pythagorean hesitant fuzzy prioritized weighted averaging aggregation operators by assigning priorities to the criteria. A real life MCDM problem has been illustrated and the effectiveness of the results are compared with those solved using cubic picture hesitant fuzzy prioritized weighted averaging aggregation operators.

Article Details

References

  1. A. Khan, S. Ashraf, S. Abdullah, M. Qiyas, J. Luo, S. Khan, Pythagorean Fuzzy Dombi Aggregation Operators and Their Application in Decision Support System, Symmetry. 11 (2019), 383. https://doi.org/10.3390/sym11030383.
  2. K.T. Atanassov, Intuitionistic Fuzzy Sets, Fuzzy Sets Syst. 20 (1986), 87–96. https://doi.org/10.1016/s0165-0114(86)80034-3.
  3. C. Tian, J. Peng, S. Zhang, W. Zhang, J. Wang, Weighted Picture Fuzzy Aggregation Operators and Their Applications to Multi-Criteria Decision-Making Problems, Computers Ind. Eng. 137 (2019), 106037. https://doi.org/10.1016/j.cie.2019.106037.
  4. B.C. Cuong, Picture fuzzy sets, J. Computer Sci. Cybern. 30 (2014), 409–420. https://doi.org/10.15625/1813-9663/30/4/5032.
  5. H. Garg, Hesitant Pythagorean Fuzzy Sets and Their Aggregation Operators in Multiple Attribute Decision-Making, Int. J. Uncertain. Quant. 8 (2018), 267–289. https://doi.org/10.1615/int.j.uncertaintyquantification.2018020979.
  6. Y.B. Jun, C.S. Kim, K.O. Yang, Cubic sets, Ann. Fuzzy Math. Inform. 4 (2012), 83–98.
  7. P.R. Kavyasree, B.S. Reddy, Cubic Γ − n normed linear spaces, Malaya J. Mat. 6 (2018), 643–647. https://doi.org/10.26637/mjm0603/0028.
  8. P.R. Kavyasree, B.S. Reddy, N-Cubic Sets Applied to Linear Spaces, Kragujevac J. Math. 46 (2022), 575–594. https://doi.org/10.46793/kgjmat2204.575k.
  9. P.R. Kavyasree and B. Surender Reddy, Cubic picture fuzzy linear spaces, AIP Conf. Proc. 2378 (2021), 020012. https://doi.org/10.1063/5.0058243.
  10. P.R. Kavyasree, B.S. Reddy, Cubic pythagorean fuzzy linear spaces, TWMS J. Appl. Eng. Math. 13 (2023), 937– 950.
  11. P.R. Kavyasree, B. Surender Reddy, Cubic picture hesitant fuzzy linear spaces and their applications in multi criteria decision making, in: L. Sahoo, T. Senapati, R.R. Yager (Eds.), Real Life Applications of Multiple Criteria Decision Making Techniques in Fuzzy Domain, Springer Nature Singapore, Singapore, 2023: pp. 533-557. https://doi.org/10.1007/978-981-19-4929-6_25.
  12. K. Rahman, S. Abdullah, M.S.A. Khan, M. Ibrar, F. Husain, Some Basic Operations on Pythagorean Fuzzy Sets, J. Appl. Environ. Biol. Sci. 7 (2017), 111-119. https://www.researchgate.net/publication/324057434.
  13. V. Torra, Hesitant Fuzzy Sets, Int. J. Intell. Syst. 25 (2010), 529–539. https://doi.org/10.1002/int.20418.
  14. S. Vijayabalaji, S. Sivaramakrishnan, A Cubic Set Theoretical Approach to Linear Space, Abstr. Appl. Anal. 2015 (2015), 523129. https://doi.org/10.1155/2015/523129.
  15. R.R. Yager, Properties and Applications of Pythagorean Fuzzy Sets, in: P. Angelov, S. Sotirov (Eds.), Imprecision and Uncertainty in Information Representation and Processing, Springer International Publishing, Cham, 2016: pp. 119-136. https://doi.org/10.1007/978-3-319-26302-1_9.
  16. L.A. Zadeh, Fuzzy Sets, Inf. Control. 8 (1965), 338–353. https://doi.org/10.1016/s0019-9958(65)90241-x.