Conformable Granular Fractional Differentiability for Fuzzy Number Valued Functions

Main Article Content

G. Anusha, G. Suresh Kumar, S. Nagalakshmi, B. Madhavi

Abstract

This paper deals with the utilization of the concept of the granular differentiability to establish a fractional derivative of the conformable type for fuzzy number valued functions. Subsequently, we introduce the notion of a conformable granular integral and provide evidence of its fundamental properties pertaining to differentiability and integrability through illustrative examples. Lastly, we delve into the discussion of the solution approach for the conformable granular initial value problem (CGIVP), as well as the solution of conformable granular differential equations (CGDEqs) associated with growth and decay.

Article Details

References

  1. T. Allahviranloo, S. Salahshour, S. Abbasbandy, Explicit Solutions of Fractional Differential Equations With Uncertainty, Soft Comput. 16 (2011), 297–302. https://doi.org/10.1007/s00500-011-0743-y.
  2. T. Allahviranloo, A. Armand, Z. Gouyandeh, Fuzzy Fractional Differential Equations Under Generalized Fuzzy Caputo Derivative, J. Intell. Fuzzy Syst. 26 (2014), 1481–1490. https://doi.org/10.3233/ifs-130831.
  3. O.A. Arqub, M. Al-Smadi, Fuzzy Conformable Fractional Differential Equations: Novel Extended Approach and New Numerical Solutions, Soft Comput. 24 (2020), 12501–12522. https://doi.org/10.1007/s00500-020-04687-0.
  4. B. Bede, S.G. Gal, Generalizations of the Differentiability of Fuzzy-Number-Valued Functions With Applications to Fuzzy Differential Equations, Fuzzy Sets Syst. 151 (2005), 581–599. https://doi.org/10.1016/j.fss.2004.08.001.
  5. B. Bede, L. Stefanini, Generalized Differentiability of Fuzzy-Valued Functions, Fuzzy Sets Syst. 230 (2013), 119–141. https://doi.org/10.1016/j.fss.2012.10.003.
  6. H. Eghlimi, M.S. Asgari, An Efficient Analytical Scheme for Fuzzy Conformable Fractional Differential Equations Arising in Physical Sciences, preprint, (2022), https://doi.org/10.21203/rs.3.rs-1100676/v1.
  7. R. Khalil, M. Al Horani, A. Yousef, M. Sababheh, A New Definition of Fractional Derivative, J. Comput. Appl. Math. 264 (2014), 65–70. https://doi.org/10.1016/j.cam.2014.01.002.
  8. M. Mazandarani, A.V. Kamyad, Modified fractional Euler method for solving Fuzzy Fractional Initial Value Problem, Commun. Nonlinear Sci. Numer. Simul. 18 (2013), 12–21. https://doi.org/10.1016/j.cnsns.2012.06.008.
  9. M. Mazandarani, M. Najariyan, Differentiability of type-2 fuzzy number-valued functions, Commun. Nonlinear Sci. Numer. Simul. 19 (2014), 710–725. https://doi.org/10.1016/j.cnsns.2013.07.002.
  10. M. Mazandarani, N. Pariz, A.V. Kamyad, Granular Differentiability of Fuzzy-Number-Valued Functions, IEEE Trans. Fuzzy Syst. 26 (2018), 310–323. https://doi.org/10.1109/tfuzz.2017.2659731.
  11. M. Najariyan, Y. Zhao, Fuzzy Fractional Quadratic Regulator Problem Under Granular Fuzzy Fractional Derivatives, IEEE Trans. Fuzzy Syst. 26 (2018), 2273–2288. https://doi.org/10.1109/tfuzz.2017.2783895.
  12. I. Podlubny, Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, Academic Press, San Diego, 1999.
  13. M.L. Puri, D.A. Ralescu, Differentials of Fuzzy Functions, J. Math. Anal. Appl. 91 (1983), 552–558. https://doi.org/10.1016/0022-247x(83)90169-5.
  14. S. Salahshour, T. Allahviranloo, S. Abbasbandy, Solving Fuzzy Fractional Differential Equations by Fuzzy Laplace Transforms, Commun. Nonlinear Sci. Numer. Simul. 17 (2012), 1372–1381. https://doi.org/10.1016/j.cnsns.2011.07.005.
  15. L. Stefanini, B. Bede, Generalized Hukuhara Differentiability of Interval-Valued Functions and Interval Differential Equations, Nonlinear Anal.: Theory Methods Appl. 71 (2009), 1311–1328. https://doi.org/10.1016/j.na.2008.12.005.
  16. L.A. Zadeh, Fuzzy Sets, Inf. Control. 8 (1965), 338–353. https://doi.org/10.1016/s0019-9958(65)90241-x.