Presic-Boyd-Wong Type Results in Ordered Metric Spaces
Main Article Content
Abstract
The purpose of this paper is to prove some Presic-Boyd-Wong type fixed point theorems in ordered metric spaces. The results of this paper generalize the famous results of Presic and Boyd-Wong in ordered metric spaces. We also initiate the homotopy result in product spaces. Some examples are provided which illustrate the results proved herein.
Article Details
References
- A.C.M. Ran, M.C.B. Reurings, A fixed point theorem in partially ordered sets and some application to matrix equations, Proc. Am. Math. Soc. 132(2004), 1435-1443.
- C.M. Chen, Fixed Point Theorems for ψ-Contractive Mappings in Ordered Metric Spaces, J. Appl. Math. Volume 2012(2012), Article ID 756453, 10 pages
- D. O'Regan, A. Petrusel, Fixed point theorems for generalized contractions in ordered metric spaces, J. Math. Anal. Appl. 341(2008), 1241-1252.
- D.W. Boyd, J.S. Wong, On nonlinear contractions, Proc. Am. Math. Soc. 20(1969), 458C464.
- H. Aydi, Some fixed point results in ordered partial metric spaces, J. Nonlinear Sci. Appl. 4(2011):210-217.
- I. Altun A. Erduran, Fixed point theorems for monotone mappings on partial metric spaces, Fixed Point Theory Appl., 2011(2011), Article ID 508730.
- J.J. Nieto, R.R. Lopez, Contractive mapping theorems in partially ordered sets and applications to ordinary differential equations, Order 22(2005), 223-239.
- J.J. Nieto., R.R. Lopez, Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations, Acta. Math. Sinica, English Ser. 23(12)(2007), 2205-2212.
- J.R. Morales, Generalizations of some fixed point theorems, Notas de Mathem ´atica, No. 199 M ´erida, 1999
- J. Mar ´in, S. Romaguera and P. Tirado, Weakly contractive multivalued maps and w-distances on complete quasi-metric spaces, Fixed Point Theory Appl. 2011 (2011),Article ID 2.
- K.P.R. Rao, G. N. V. Kishore, M. Md. Ali, A generalization of the Banach contraction principle of Preˇsi ´c type for three maps, Math. Sci. 3(3)(2009), 273-280.
- L.B. Ciri ´c and S. B. Preˇsi ´c, ´ On Preˇsi ´c type generalisation of Banach contraction principle, Acta. Math. Univ. Com. 76, No. 2(2007), 143-147
- M. Akkouchi, On a fixed point theorem of D. W. Boyd and J. S. Wong, Acta Math. Vietnam. 27, Number 2 (2002), 231-237.
- M.R. Taskovi ´c, A generalization of Banach's contraction principle, Publ. Inst. Math. Beograd, 23(37)(1978), pp. 179-191.
- M.S. Khan, M. Berzig and B. Samet, Some convergence results for iterative sequences of Preˇsi ´c type and applications, Adv. Difference Equ. 2012, 2012:38 doi:10.1186/1687-1847-2012- 38
- M. Pˇacurar, A multi-step iterative method for approximating common fixed points of Preˇsi ´cRus type operators on metric spaces, Studia Univ. “Babe ¸s-Bolyai”, Mathematica, Volume LV, Number 1, March 2010.
- M. Pˇacurar, Approximating common fixed points of Preˇsi ´c-Kannan type operators by a multistep iterative method, An. S ¸t. Univ. Ovidius Constant ¸a 17(1)(2009), 153-168.
- M. Pˇacurar, Common fixed points for almost Preˇsi ´c type operators, Carpathian J. Math. 28 No. 1 (2012), 117-126.
- N.V. Luong, N.X. Thuan, Some fixed point theorems of Preˇsi ´c-Ciri ´c type ´ , Acta Univ. Apulensis Math. Inform. 2012(2012), no. 30, 237-249.
- P. Das, L.K. Dey, Fixed point of contractive mappings in generalized metric spaces, Math. Slovaca 59 no. 4 (2009), 499-504.
- R. George, K. P. Reshma and R. Rajagopalan, A generalised fixed point theorem of Preˇsi ´c type in cone metric spaces and application to Morkov process, Fixed Point Theory Appl. 2011(2011):85, doi:10.1186/1687-1812-2011-85.
- R.P. Agarwal, M. A. El-Gebeily, D. O'Regan, Generalized contractions in partially ordered metric spaces, Appl. Anal. 87(2008), 109-116.
- R.P. Pant, V. Pant, V.P. Pandey, Generalization of Meir-Keeler type fixed point theorems, Tamkang J. Math. 35, no. 3(2004), 179-187. 24] S.B. Preˇsi ´c, Sur une classe dinequations aux differences finite et sur la convergence de certaines suites, Publ. de lInst. Math. Belgrade 5(19)(1965), 75-78.
- S.B. Preˇsi ´c, Sur la convergence des suites, Comptes. Rendus. de l'Acad. de Paris 260(1965), 3828-3830.
- S. Banach, Sur les op ´erations dans les ensembles abstraits et leur application aux ´equations int ´egrales, Fund Math., 3(1922), 133-181.
- S. Radenovi ´c, Z. Kadelburg, Generalized weak contractions in partially ordered metric spaces, Comput. Math. Appl. 60(2010), 1776- 1783. doi:10.1016/j.camwa.2010.07.008
- S. Shukla, Preˇsi ´c type results in 2-Banach spaces, Afrika Matematika, (2013) DOI 10.1007/s13370-013-0174-2
- S. Shukla, Set-valued Preˇsi ´c-Ciri ´c type contraction in 0-complete partial metric spaces ´ , Matemati ´cki Vesnik, In press, (2013).
- S. Shukla, B. Fisher, A generalization of Preˇsi ´c type mappings in metric-like spaces, Journal of Operators, 2013 (2013), Article ID 368501, 5 pages.
- S. Shukla, R. Sen, Set-valued Preˇsi ´c-Reich type mappings in metric spaces, Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas (2012). DOI 10.1007/s13398-012-0114-2
- S. Shukla, R. Sen, S. Radenovi ´c, Set-valued Preˇsi ´c type contraction in metric spaces, An. S ¸tiint ¸. Univ. Al. I. Cuza Ia ¸si. Mat. (N.S.) (Accepted)(2012).
- S. Shukla, S. Radenovi ´c, A generalization of Preˇsi ´c type mappings in 0-Complete ordered partial metric spaces, Chinese Journal of Mathematics 2013 Article ID 859531, 8 pages.
- S. Shukla, S. Radojevi ´c, Z.A. Veljkovi ´c, S. Radenovi ´c, Some coincidence and common fixed point theorems for ordered Preˇsi ´c-Reich type contractions, Journal of Inequalities and Applications, 2013 2013:520. doi: 10.1186/1029-242X-2013-520
- S. Shukla, M. Abbas, Fixed point results of cyclic contractions in product spaces, Carpathian J. Math., In press (2014).
- S.K. Malhotra, S. Shukla, R. Sen, A generalization of Banach contraction principle in ordered cone metric spaces, J. Adv. Math. Stud., 5(2) (2012), 59-67.
- S. K. Malhotra, S. Shukla, and R. Sen, Some fixed point theorems for ordered Reich type contractions in cone rectangular metric spaces. Acta Mathematica Universitatis Comenianae, LXXXII 2 (2013), 165C175.
- W.A. Kirk, Fixed points of asymptotic contractions, J. Math. Anal. Appl. 277(2003), 645-650.
- W. Shatanawi, B. Samet, M. Abbas, Coupled fixed point theorems for mixed monotone mappings in ordered partial metric spaces, Math. Comput. Model. 55(2012), 680-687.
- Y.Z. Chen, A Preˇsi ´c type contractive condition and its applications, Nonlinear Anal. 71, 2012-2017 (2009). doi:10.1016/j.na.2009.03.006
- Z. Kadelburg, M. Pavlovi ´c, S. Radenovi ´c, Common fixed point theorems for ordered contractions and quasicontractions in ordered cone metric spaces, Comput. Math. Appl. 59(2010), 3148-3159.