Certain Bounds for a Subclasses of Analytic Functions of Reciprocal Order

Main Article Content

K. Dhanalakshmi, D. Kavitha, K. Anitha

Abstract

In this article we obtain the best possible estimates, Fekete Szego inequality and bounds of second Hankel determinant for the function belonging to the new subclass of reciprocal order.

Article Details

References

  1. D.G. Cantor, Power Series With the Integral Coefficients, Bull. Amer. Math. Soc. 69 (1963), 362–366.
  2. G. Fekete, M. Szegö, Eine Benberkung Uber Ungerada Schlichte Funktionen, J. London Math. Soc. 8 (1933), 85–89.
  3. U. Grenander, G. Szegö, Toeplitz Forms and Their Applications, California Monographs in Mathematical Sciences, University of California, Berkeley, Calif, USA, 1958.
  4. W.K. Hayman, On the Second Hankel Determinant of Mean Univalent Functions, Proc. London Math. Soc. s3-18 (1968), 77–94. https://doi.org/10.1112/plms/s3-18.1.77.
  5. A. Janteng, S. Halim, M. Darus, Coefficient Inequality for a Function Whose Derivative Has a Positive Real Part, J. Inequal. Pure Appl. Math. 7 (2006), 50.
  6. S.S. Miller, P.T. Mocanu, M.O. Reade, All α-Convex Functions Are Univalent and Starlike, Proc. Amer. Math. Soc. 37 (1973), 553–554.
  7. F.R. Keogh, E.P. Merkes, A Coefficient Inequality for Certain Classes of Analytic Functions, Proc. Amer. Math. Soc. 20 (1969), 8–12.
  8. P.T. Mocanu, Une Propriété de Convexité Généralisée dans la Théorie la Représentation Conforme, Mathematica, 11 (1969), 127–133.
  9. P.T. Mocanu, Alpha-convex integral operator and starlike functions of order beta, in: Itinerant Seminar on Functional Equations, Approximation and Convexity (Cluj-Napoca, 1989), Univ. "Babeş-Bolyai", Cluj-Napoca, 1989, pp. 231– 238.
  10. P.T. Mocanu, Alpha-convex integral operators and strongly starlike functions, Stud. Univ. Babes-Bolyai Math. 34 (1989), 18–24.
  11. M. Nunokawa, S. Owa, J. Nishiwaki, et al. Differential subordination and argumental property, Comput. Math. Appl. 56 (2008), 2733–2736. https://doi.org/10.1016/j.camwa.2008.02.050.
  12. C. Pommerenke, On the Hankel determinants of univalent functions, Mathematika. 14 (1967), 108–112. https://doi.org/10.1112/s002557930000807x.
  13. C. Pommerenke, Univalent Functions, Vandenhoeck & Ruprecht,Göttingen, Germany, 1975. http://lib.ugent.be/catalog/rug01:000030033.
  14. M.I.S. Robertson, On the Theory of Univalent Functions, Ann. Math. 37 (1936), 374–408. https://doi.org/10.2307/1968451.
  15. H. Silverman, Univalent Functions With Negative Coefficients, Proc. Amer. Math Soc, 51, (1975), 109-116.
  16. D. Vamshee Krishna and T. Ramreddy, Second Hankel Determinant for Reciprocal of Starlike and Convex Functions, An. Univ. Oradea Fasc. Mat. Tom XXIII (2016), 131–136.
  17. K.A. Challab, M. Darus, F. Ghanim, Third Hankel Determinant for a Subclass of Analytic Functions of Reciprocal Order Defined by Srivastava-Attiya Integral Operator, Rend. Istit. Mat. Univ. Trieste, 51 (2019), 13–31.
  18. Y. Sun, W.P. Kuang, Z.G. Wang, On Meromorphic Starlike Functions of Reciprocal Order α, Malays. Math. Sci. Soc. 35 (2012), 469–477.